
Kafka在大数据生态系统中的价值
近几年, Apache Kafka的应用有了显著的增长。Kafka最新的客户包括Uber, Twitter, Netflix, LinkedIn, Yahoo, Cisco, Goldman Sachs 等。Kafka是个高可扩展的生产消费者系统。利用Kafka系统,用户可以发布大量的消息, 同时也能实时订阅消费消息。本文旨在说明Kafka如何在大数据生态系统中扮演越来越重要的角色。
以不变应万变模式的短板
长期以来,数据库成为人们存放和处理感兴趣数据的首选。数据库厂商不断发布新功能 (例如 搜索,流式处理和分析),以确保在数据库内能完成更多有意思的工作。然而,基于以下2点原因,数据库模式不再是理想的方案。
原因一:当人们试图采集其他类型的数据集(例如用户行为跟踪记录,运营性能指标,应用日志等), 数据库变的越来越昂贵。相比于交易数据,这些数据集同等重要,因为利用它们能更深入地理解业务,然而它们的数据量会大到2-3倍的规模。由于传统数据库通常依赖于昂贵又高端的存储系统(例如SAN), 因而数据库存储所有数据集的开销变的极其昂贵。
其次,随着越来越多的功能堆砌,数据库变的过于复杂,在维护之前遗留版本的同时,很难增加新的功能。数据库厂商跨多年的发布变的越来越普遍。
专用分布式系统的涌现
在近10年, 为了克服这些短板,人们开始构建专用系统。这些系统生而为了单一的目标,但能够非常好地完成。因为他们的简单性,在商业硬件上构建类似的分布式系统逐渐可行。因而,相比 以SAN为存储基础的数据库,这些专用系统性价比更高。通常,类似系统是构建在开源项目上,进而降低了所有权的成本。而且,由于这些专用系统只关注单一目标,相比于大而全的系统,他们可以发展和改进得更快。Hadoop引领了这个风潮。它专注于离线数据处理,通过提供分布式文件系统(HDFS)和计算引擎(MapReduce)来批量存储和处理数据。相比于数据库存储,利用HDFS,企业能够支持低廉地采集存储更多有价值的数据集。利用MapReduce,大家能以低廉的代价来针对新数据集 提供报告和分析。在其他很多领域,类似的模式在不断上演。
键/值对存储:Cassandra,MongoDB,HBase等
搜索:ElasticSearch, Solr 等
流式处理:Storm, Spark Streaming,Samza等
图:GraphLab,FlockDB 等
时序数据库:OpenTSDB等
类似专用系统能帮助公司提供更深入地见解, 构建前所未有的新应用。
专用系统数据导入
当这些专用系统变革IT技术栈,它也会引发新挑战:如何导入数据到这些系统中。首先,要注意的是从交易型数据到用户跟踪数据,运营指标,服务日志等,会有很多有趣的数据类型。通常,同一份数据集需要被注入到多个专用系统内。例如,当应用日志用于离线日志分析,它和搜索单个日志记录的作用同等重要。这使得构建各自独立的工作流来采集每种类型的数据,直接导入到每个相关的专用系统中 变的不切实际。
其次,当Hadoop常常保存所有类型数据的副本,这导致导入数据到所有其他Hadoop以外的系统 无法实行 因为大部分系统要求数据实时导入 这是Hadoop所无法保证的。这也是为什么Kafka能出现并参与大数据生态系统。Kafka有以下不错的特性:
为了能在商业硬件上,存储高容量的数据而设计的分布式系统。
设计成能支持多订阅的系统,同份发布的数据集能被消费多次。
天生保存数据到磁盘,在没有性能损耗的条件下,能同时传送消息到实时和批处理消费者。
内置的数据冗余,因而可以保障高可用性,以用于关键任务的数据发布消费。
大部分被提及的公司在最初阶段总是集成多个专用系统。他们利用Kafka作为数据中转枢纽来实时消费所有类型的数据。同份Kafka数据可以被导入到不同专用系统中。如下图所示,我们参考这样的构架作为流式数据平台。由于新系统能通过订阅Kafka,轻易地获取它想要的数据,我们可以轻松地引入额外的专用系统,进入到这系统构架中。
未来展望
业界趋势是多个专用系统能在大数据生态圈内共存。当更多的公司开始推进实时处理时,由分布式生产/消费系统(例如:Kafka)驱动的流式数据平台 在这生态系统中扮演愈加重要的角色。由此产生的一个影响是人们开始重新思考数据策管流程。目前,很多数据策管例如模式化数据和数据模式的演化将被延迟到 数据加载到Hadoop系统内的阶段。由于统一数据管理的流程会在其他专用系统重复执行,这对于流式数据平台并不理想。更好的方案是当数据消化处理,进入Kafka时,早期就开始设计数据策管。这也是我们Confluent目前做的部分工作,更多细节可以参考我们的网站。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29