京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据让我们前所未有的方式和观点,看到究竟什么有用、什么没用,以前不可能观察到的种种学习阻碍,现在有办法一一化解,大幅改善学生的学习成效,颠覆传 统教学模式,造福更多学子。课程可以依据学生个人的需求做调整,真正做到因材施教,因为教师可以透过学生在线上学习时不经意的行为来判断成效、调整教学内 容和顺序,以及多次复习会造成学习瓶颈的困难观念,甚至即时因应学生的反应而出招等等。教师的工作不会被教学网路和影片取代,而会变得更有效益、也更有 趣,因为能够更专注针对学生作个人化的指导。
他们也认利用大数据分析,学校领导者和政府决策官员,也能用更低的成本提供更多教育机会,这些正是减少社会贫富差距、让社经阶层流动的重要因素;社会大众 也能够知道「学习」应当是怎么一回事,打破教育主管机关和学校的垄断地位,从而让教育的本质和体制彻底翻转。他们主张,大数据时代正是不断学习的时代、翻 转教育的时代!
不过大数据的应用是双面刃,我们可能会把相关性误判为因果,而且如果学生的个资无法被保护,其旧学习歷程被曝光,可是会影响日后的升学与就业。关于这方 面,《大数据:教育篇》引用了《大数据》的许多观念和案例,例如误将相关性当因果以及个资保护等等,所以建议也要去读《大数据》这本书。
不过,尽信书不如无书,作者在西方遇到的问题,和我们在东亚遇到的,有很大的差异。最大的差异有两点。
一个大差异,在一张很多网友在脸书分享的图表清楚表达出来:图裡有两条轴线,第一条轴线为「欧美人才养成」,而第二条则是「台湾人才养成」,轴线将学习生 涯分成「学前」、「小学」、「国中」、「高中」以及「大学」等五个阶段。「欧美人才养成」各阶段的学习目标相当明确并且不同,学前做好生活管理、小学探索 环境、国中要开始找寻自己的梦想、高中则要面对生涯抉择,而到了大学就要开始培养实务能力。
台湾人才培养的轴线,从「学前」一直到「高中」生涯,全是「读书考试」,一直到「大学」时期,才要将「生活管理」、「探索环境」、「找寻梦想」、「生涯抉择」以及「培养实务能力」一次统统完成,其中当然还少不了「读书考试」。
欧美的教育偏向素质教育,相对于偏重考试的应试教育而言,较为注重体育、艺术能力和多元智能的培养,而真正的素质教育,目的在于让学生能发挥个人潜能,各 展所长,并培养良好的品格,并不局限于学术上的才能。台湾的教育能够筛选出很会考试(甚至还不见得会「读书」哦)的学生,连公务系统都极度依赖考试,虽然 有好些公家工作几乎不需要考试的技能。可是因为考试实在太浮滥,使得疲于奔命的教师能好好用心出题的时间都被严重压缩,连有没有认认真真地好好考考学生各 方面的学术能力都成问题,更甭提学术能力也非社会所需的全部。
另外一个差异是,台湾的教育太过注重标準答案,可是严重扼杀学生的创意。但是欧美的教育很注重个人的启发,所以顶尖的人才在欧美的教育环境,往往可以更容 易发挥出他们的潜力,表现出他们充沛的创造力。可是他们的对素质一般的学生,反正做得不见得比台湾好。台湾的教育环境,让学生拚命练习考试、练习考试再练 习考试,让学生的程度比起欧美整齐的多。以我和朋友们在美国唸博班当助教的经验来看,台湾学生的程度差异在一个班中,算是比较整齐的,成绩优劣几乎凭个人 努力付出多寡。可是在美国大学,尤其是公立学校,大部分的学生,在数理方面真的很不行!
举个例子来说,我们常常看到学生在实验数据中,他们尝试要把上吨的盐溶在小烧杯裡,或者把实验桌上的小铅球射上火星,因为连单位都搞错了Orz 有位老师在普通生物学考题上问学生什么是pH值,居然有四分之一的学生选择「它不存在」;还有老师指出,大四的学生,居然有两成回答果蝇的基因数量是小于 一,另外两成写无穷大(正确数目大约是一万多),他说那四成学生基本上是「完全的废物」;还有很多搞笑的事,真是罄竹难书。面对这些学生,教授们的态度往 往是「放弃」,可是大数据或许能让这情势反转。
台湾的教育环境,往往比欧美更善待中上程度的学生,用严酷的练习考试来磨练他们的能力,可是却严重地忽略了顶尖人材的教育,而且也几乎完全没有为培养社会 各界的领袖所準备。台湾的大学,就算连顶尖的台大和清大,大致上都还是停留在训练优异的干部为主,教授的教学方式和内容,和其他大部分的大学几乎没差太 多,顶多深度有一些差异而已。可是,就拿美国来说,顶尖大学的目标是在培养顶尖的领袖!一流大学的目标是在培养社会各界菁英、二流大学的是在培养优异的干 部、叁流大学的是在培养良好的基层员工等等。所以,很不幸的,台湾的大学可能在培养优异的干部上很称职,可是要成为社会各界菁英,就只能靠学生自己的努力 和见识,领袖的话就算了。
要培养出优异的干部,大数据的应用应该有其优势,可是社会菁英和领袖的培养,大数据或许无用武之地,因为大据数无法告诉你过去未曾发生的事情,也无法预测 和产生出创新,因此对于台湾的教育,大数据可以提高学生的学业,可是五育的训练,以及领袖和社会菁英的培养,我们可能先不要去思考什么大数据之类的,先从 整体教育环境下手才比较实际。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22