
大数据是时下最热门的企业IT话题,那么大数据对存储有什么要求呢?为了解决这个问题,我们首先来分析一下大数据的特点。
Gartner对大数据下了一个简洁的定义:“大数据是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。”
所以,大数据既包含结构化数据也包括非结构化数据,而且是以数量巨大、变化率高的形式存在。
大数据如此热门的主要原因是因为它能提供可行性的见解。企业通常使用分析应用来提取大数据里的本来难以挖掘的信息,而这是用现有的技术和方法不可能办到的。
像石化工业和金融服务行业已经使用数据仓库技术来处理大量的数据几十年了。但这并不是指现在所谓的大数据。
主要区别在于,现在的大数据包括非结构化数据,并且可以从各种数据中提取有用的信息,比如邮件、日志文件、社交多媒体、商业交易及其他数据。
比如,保存在数据库里的一家连锁零售商店的某商品的销售图表数据。对这些数据的获取就不是大数据范畴的问题。
但是如果企业需要把某商品的销售量和特定时刻的天气状况,或者不同的消费者信息联系起来,并且要求能快速获取这些信息,这需要密集处理,这就是大数据技术的一种应用。
大数据存储和传统的数据存储相比有什么不同?
大数据应用的一个主要特点是实时性或者近实时性。比如,如果警察拦住一辆车,想得到这辆车的相关信息,那么这对时间的要求是越快越好。
类似的,一个金融类的应用,能为业务员从数量巨大种类繁多的数据里快速挖掘出相关信息,能帮助他们领先于竞争对手做出交易的决定。
数据通常以每年增长50%的速度快速激增,尤其是非结构化数据。随着科技的进步,有越来越多的传感器采集数据、移动设备、社交多媒体等等,所以数据只可能继续增长。
总而言之,大数据需要非常高性能、高吞吐率、大容量的基础设备。
大数据存储选择
选择存储大数据方法时需要考虑到应用特点和使用模式。
在传统的数据仓库上进行对相似数据集的挖掘操作,一般都在一个单独的存储设备上进行。现在这种方法对处理能力和存储容量的可扩展性来说已经不是最优的选择了。
相反,一个web分析工作负载要求能在低延迟的情况下访问大量的小文件,使用大量的电脑或者存储单元,性能和容量都可以在一定条件下进行扩展。这种存储方式更适合大数据。
这里提到了多种存储方法。
首先是横向扩展(scale-out)NAS。
横向扩展NAS是文件级别的访问存储器,它是由多个连接在一起的存储节点构成,而且存储容量和处理能力会随着节点的增加而提升。同时,支持数十亿文件和PB级存储容量的并行文件系统允许把不同位置的大量数据连接起来。
横向扩展NAS产品主要包括:EMC Isilon及其OneFS分布式文件系统;HDS的 Cloudera Hadoop Distribution Cluster 基准体系架构;Data Direct Networks hScaler Hadoop NAS平台;IBM的SONAS;HP的X9000;还有DATA Ontap横向扩展操作系统版本已经到8.2的NetApp。
另外一个适合处理大量数据的技术是对象存储。对象存储有可能替代传统的树形文件系统。对象存储支持平行的数据结构,所有文件都有唯一的ID标识,类似于网上的DNS系统。在平行的文件系统结构中比在垂直的文件系统结构中处理大量的对象要简单的多。
对象存储产品越来越多的支持大数据分析环境,其产品主要有Scality的RING体系结构,Dell 的DX,还有EMC的Atmos平台。
Hyperscale、大数据和ViPR
一个被称作hyperscale的计算机/存储体系结构凭借其被诸如Facebook和Google等公司的使用,而日益突显。Hyperscale使用许多相对简单常见的基于硬件的直连式存储计算机节点,来提高大数据分析环境的性能,比如Hadoop。
和传统的企业级计算和存储构架不同,hyperscale在完整的计算机/DAS节点上进行冗余备份。如果一部分节点遇到故障,失败的任务将会交给另一个备份节点。整个出故障的单元都会被替换。
这个方法适合非常大规模数据的用户,比如前面提到的一些网络先驱者。
但是这也不一定,因为一些有实力的供应商已经意识到hyperscale体系结构给他们带来的机会和威胁,同时随着数据的增长,大数据种类也纷繁复杂。
这似乎就是EMC推出其软件定义存储ViPR的原因了。今年EMC World 公布,ViPR在现有的存储设备上放置了一个横向扩展对象,能将这些存储设备——EMC或者其它供应商的存储阵列、DAS和商品存储——管理起来作为一个单独的存储池。另外,ViPR的存储容量可以通过API连接到Hadoop或者其它大数据分析引擎,使数据可以在数据存储的位置进行分析查询。
Nutanix被称为高度融合的存储和计算节点的出现也反应了这个趋势。
这个初创公司将计算和存储系统合并到了一起,并出售其支持集群的2U系统,该系统为Hadoop用户提供hyperscale节点,每个节点有四个CPU插槽。使用SSD和旋转介质,提供数据分层和压缩,能达到宣称的2GBps的吞吐量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19