京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如若问起现在处于怎样的时代,想必你会脱口而出”互联网时代”,其实,“互联网的时代”早已变了性质。由于移动互联网的极速扩张,“人”已经更多地融入到了互联网之中,海量用户行为数据由此产生,“大数据时代”到来了。引用麦肯锡对于“大数据”时代的形容,“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产要素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”
大数据时代银行所面临的挑战
在这个大数据的时代,巨头互联网企业都开始涉足金融行业,且不断推出新的产品、新的商业模式、并拥有更好的用户体验,传统银行业务正在逐渐被蚕食。为何传统金融业巨鳄银行一步步被互联网企业逼到必须要奋起直追,原因有很多,是时代的原因、技术的原因、消费者需求的不断改变……其总结起来有几下几点:
1、互联网击碎了空间的阻碍,使得客户对物理距离的敏感度越来越强。
2、客户对金融服务的需求是不分时间的全天候、实时的业务需求。
3、客户获取信息的渠道和范围已经大大增加。客户已经不再被动选择,而是追求更加个性化的产品和服务,并根据搜集来的各种信息做出判断、随时分享,将个人体验的影响扩大到更大范围的群体之中。
4、互联网企业通过客户在互联网上留下的海量足迹,进行挖掘与运用,大胆进行金融转型,通过大数据主动了解客户需求。
5、互联网企业具有互联网场景入口的优势,触达客户更为精准。
在大数据时代,金融企业也需要互联网化。而传统银行,必须走下神坛,积极地寻找客户、了解客户、服务客户。
电子银行的困局
在这样的背景下,传统银行也奋起直追,在寻求转型的出路,电子银行应运而生。但目前,传统银行互联网化的步伐仅仅是增加了一个互联网渠道,如开设网上银行、手机银行等,互联网和大数据的价值并未真正体现,比如,银行为客户提供手机银行APP、提供了网银,但客户不会去开通和使用。
传统银行如何正确地互联网化、如何有效利用大数据改善银行与用户的沟通、如何让大数据结合场景帮助传统银行更好地运作,这些问题都亟待解决。
大数据如何帮助电子银行面对挑战?
目前,大数据助力电子银行主要通过四个方面:1、拓宽数据广度与维度,让电子银行更了解客户;2、对大数据专业化的应用,让电子银行能够为客户定制金融服务;3、通过大数据帮助电子银行定位客户偏好产品;4、通过大数据帮助电子银行定位客户偏好场景。5、通过大数据帮助电子银行精准营销。
以集奥聚合为例,不仅可以为商业银行客户提供了各类时效性应用标签,还通过安排专业的数据分析师的驻场方式,与客户一起深入剖析阻力,帮助客户分析大数据,应用大数据,并根据电子银行部的业务目标,对手机银行潜在客户进行行为分析,洞察客户习惯偏好,健全潜在客户画像,帮助客户锁定手机银行潜在客户高频生活场景,筛选更低成本、更高回报的合作商户及权益,并输出专业的分析报告。协助该银行找到了最合适电子银行部目标客群的合作商户,并进行合作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31