
如若问起现在处于怎样的时代,想必你会脱口而出”互联网时代”,其实,“互联网的时代”早已变了性质。由于移动互联网的极速扩张,“人”已经更多地融入到了互联网之中,海量用户行为数据由此产生,“大数据时代”到来了。引用麦肯锡对于“大数据”时代的形容,“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产要素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”
大数据时代银行所面临的挑战
在这个大数据的时代,巨头互联网企业都开始涉足金融行业,且不断推出新的产品、新的商业模式、并拥有更好的用户体验,传统银行业务正在逐渐被蚕食。为何传统金融业巨鳄银行一步步被互联网企业逼到必须要奋起直追,原因有很多,是时代的原因、技术的原因、消费者需求的不断改变……其总结起来有几下几点:
1、互联网击碎了空间的阻碍,使得客户对物理距离的敏感度越来越强。
2、客户对金融服务的需求是不分时间的全天候、实时的业务需求。
3、客户获取信息的渠道和范围已经大大增加。客户已经不再被动选择,而是追求更加个性化的产品和服务,并根据搜集来的各种信息做出判断、随时分享,将个人体验的影响扩大到更大范围的群体之中。
4、互联网企业通过客户在互联网上留下的海量足迹,进行挖掘与运用,大胆进行金融转型,通过大数据主动了解客户需求。
5、互联网企业具有互联网场景入口的优势,触达客户更为精准。
在大数据时代,金融企业也需要互联网化。而传统银行,必须走下神坛,积极地寻找客户、了解客户、服务客户。
电子银行的困局
在这样的背景下,传统银行也奋起直追,在寻求转型的出路,电子银行应运而生。但目前,传统银行互联网化的步伐仅仅是增加了一个互联网渠道,如开设网上银行、手机银行等,互联网和大数据的价值并未真正体现,比如,银行为客户提供手机银行APP、提供了网银,但客户不会去开通和使用。
传统银行如何正确地互联网化、如何有效利用大数据改善银行与用户的沟通、如何让大数据结合场景帮助传统银行更好地运作,这些问题都亟待解决。
大数据如何帮助电子银行面对挑战?
目前,大数据助力电子银行主要通过四个方面:1、拓宽数据广度与维度,让电子银行更了解客户;2、对大数据专业化的应用,让电子银行能够为客户定制金融服务;3、通过大数据帮助电子银行定位客户偏好产品;4、通过大数据帮助电子银行定位客户偏好场景。5、通过大数据帮助电子银行精准营销。
以集奥聚合为例,不仅可以为商业银行客户提供了各类时效性应用标签,还通过安排专业的数据分析师的驻场方式,与客户一起深入剖析阻力,帮助客户分析大数据,应用大数据,并根据电子银行部的业务目标,对手机银行潜在客户进行行为分析,洞察客户习惯偏好,健全潜在客户画像,帮助客户锁定手机银行潜在客户高频生活场景,筛选更低成本、更高回报的合作商户及权益,并输出专业的分析报告。协助该银行找到了最合适电子银行部目标客群的合作商户,并进行合作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-07CDA 一级考试内容详解 CDA(Certified Data Analyst)即数据分析师认证,一级考试作为该认证体系中的入门级别考试,主要面向零基 ...
2025-08-07中介分析的 SPSS 结果解读:从原理到实践 在社会科学、医学、心理学等领域的研究中,变量之间的关系往往并非简单的直接影响,而 ...
2025-08-07