
大数据引发的风险与管控
前些时候,几乎全世界都在围观李世石和阿尔法狗的“人机大战”。在围棋对弈的两端,排名世界第五的李世石,在一定程度上代表着人类的智慧,接受以棋谱大数据撑腰的电脑阿尔法狗的挑战。
胜负总有定数。然而,在胜负之外,在娱乐狂欢之外,很多人开始陷入沉思,甚至忧思。
事实上,无论愿不愿意、接受不接受,大数据早已开始悄然渗入人类生活的每一个领域,乃至无孔不入,教育和学习领域亦不能例外。
当很多人尚不知大数据为何物时,当我们还在怀疑大数据所蕴含的威力,问它究竟能有什么用处时,甚至于浑然不知,以“无知者无畏”之姿态斥其无用时,世之智者如维克托·迈尔·舍恩伯格等,早已超越大数据“是否有用”这样初级的问题,而是从整个教育发展的过去、现在以及未来趋势入手,关照大数据时代背景下,教育领域即将面临的不可回避的巨变。
虽然,这一变革正如围棋对弈一般,场面上看起来并不那么喧闹,但实质上却是暗流汹涌,不可逆转。因为,大数据已经正在渗入教育和学习生活的方方面面,并将对这个世界的教育和学习产生深远的影响。
在《与大数据同行——学习和教育的未来》一书中,迈尔·舍恩伯格截取了喜马拉雅雪峰脚下不丹“唐卡绘画”传习这一传统教育的典型镜像,来意指传统教育的“薄暮”,并随之带领我们走进一个大数据时代学习和教育正在悄然发生的巨变场景。
事实上,大数据即将为教育领域带来的变革和益处,相对而言是较易接受和理解的。因为只需要让感兴趣的人们不断“尝到应用的甜头”,即可诱导人们步步深入,乃至深陷其中而难以自拔。至于如何利用大数据优化学习,相关专家已有诸多堪称细致入微的阐释。
至此,面对大数据,教育领域是否“过于保守”,就被提上了人们需要思考的议程。因为,表面看来,几乎在每一次的科技革新对人们生活、生产、学习带来的巨大改变中,教育领域都表现得不如工商企业那么灵敏。
但更为可贵的是,当人们还在纠结于对教育而言大数据是否有用、如何应用这些问题时,迈尔·舍恩伯克等智者早已开始警惕并洞悉大数据的另一面:大数据的阴暗面、不当应用即将带来的新的风险,以及人类面对大数据应有的恰当态度和应对措施等,从而将我们的思考引入大数据之于人类的道德、诚信、法治精神层面,乃至善良的人性。
新的科技革新,与生俱来的往往是一把双刃剑。见微可以知著,相对大数据而言,在当前的教育生活中,即使一个小小的“小数据”,比如一个小学生某一次的期末数学考试成绩,都很有可能被人无意间拿来给他贴上一个“毫无数学天赋”的标签,从而影响他的一生。
正如迈尔·舍恩伯格所说,遗忘是心灵垃圾的大扫除,而无法遗忘的旧数据,将是“最大的隐患”。在大数据时代,如果一个人学生时代的各种信息数据被永久存留而无法“遗忘”,从而形成他“永久的过去”,而这些数据随时随地可以被其他社会组织或个人,比如他将来的应聘单位提取,并因此依然将他定义在那些事实上可能早已消失得无影无踪的“过去”时,那将会对他产生何等的影响,带来多少烦恼?抑或经过基于大数据的一番难以辩驳的预测,给出一名小学生一个“被规划的未来”,因而让基于他过去的数据决定了他的未来,那将意味着什么?有时候,这样的思考可能会让人感到“细思恐极”。
此外,在大数据面前,个人隐私如何得到有效保护,以及能够拥有和利用大数据学习的学生能否因此而更加优秀,而那些不能拥有和利用大数据的学生能否因此而改进和提高的机会更少,从而形成一道不可逾越的“数字鸿沟”?对诸如此类问题的思考,也会让我们觉得,面对大数据的凶猛来势,教育领域是否真的“过于保守”,还需要分情况界定,因为过犹不及,保守和冒进往往是事物的两端。
数据无情人有情。正如迈尔·舍恩伯格所说,大数据的背后其实是人的问题。那么,大数据如何得到合理的管控,“取信于人”,为教育和学习所用,就成了一个极为迫切且值得深思的问题。
“合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下。”无论如何,面对大数据这一认识世界的新方式,还是要从认识大数据本身开始。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30