京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据引发的风险与管控
前些时候,几乎全世界都在围观李世石和阿尔法狗的“人机大战”。在围棋对弈的两端,排名世界第五的李世石,在一定程度上代表着人类的智慧,接受以棋谱大数据撑腰的电脑阿尔法狗的挑战。
胜负总有定数。然而,在胜负之外,在娱乐狂欢之外,很多人开始陷入沉思,甚至忧思。
事实上,无论愿不愿意、接受不接受,大数据早已开始悄然渗入人类生活的每一个领域,乃至无孔不入,教育和学习领域亦不能例外。
当很多人尚不知大数据为何物时,当我们还在怀疑大数据所蕴含的威力,问它究竟能有什么用处时,甚至于浑然不知,以“无知者无畏”之姿态斥其无用时,世之智者如维克托·迈尔·舍恩伯格等,早已超越大数据“是否有用”这样初级的问题,而是从整个教育发展的过去、现在以及未来趋势入手,关照大数据时代背景下,教育领域即将面临的不可回避的巨变。
虽然,这一变革正如围棋对弈一般,场面上看起来并不那么喧闹,但实质上却是暗流汹涌,不可逆转。因为,大数据已经正在渗入教育和学习生活的方方面面,并将对这个世界的教育和学习产生深远的影响。
在《与大数据同行——学习和教育的未来》一书中,迈尔·舍恩伯格截取了喜马拉雅雪峰脚下不丹“唐卡绘画”传习这一传统教育的典型镜像,来意指传统教育的“薄暮”,并随之带领我们走进一个大数据时代学习和教育正在悄然发生的巨变场景。
事实上,大数据即将为教育领域带来的变革和益处,相对而言是较易接受和理解的。因为只需要让感兴趣的人们不断“尝到应用的甜头”,即可诱导人们步步深入,乃至深陷其中而难以自拔。至于如何利用大数据优化学习,相关专家已有诸多堪称细致入微的阐释。
至此,面对大数据,教育领域是否“过于保守”,就被提上了人们需要思考的议程。因为,表面看来,几乎在每一次的科技革新对人们生活、生产、学习带来的巨大改变中,教育领域都表现得不如工商企业那么灵敏。
但更为可贵的是,当人们还在纠结于对教育而言大数据是否有用、如何应用这些问题时,迈尔·舍恩伯克等智者早已开始警惕并洞悉大数据的另一面:大数据的阴暗面、不当应用即将带来的新的风险,以及人类面对大数据应有的恰当态度和应对措施等,从而将我们的思考引入大数据之于人类的道德、诚信、法治精神层面,乃至善良的人性。
新的科技革新,与生俱来的往往是一把双刃剑。见微可以知著,相对大数据而言,在当前的教育生活中,即使一个小小的“小数据”,比如一个小学生某一次的期末数学考试成绩,都很有可能被人无意间拿来给他贴上一个“毫无数学天赋”的标签,从而影响他的一生。
正如迈尔·舍恩伯格所说,遗忘是心灵垃圾的大扫除,而无法遗忘的旧数据,将是“最大的隐患”。在大数据时代,如果一个人学生时代的各种信息数据被永久存留而无法“遗忘”,从而形成他“永久的过去”,而这些数据随时随地可以被其他社会组织或个人,比如他将来的应聘单位提取,并因此依然将他定义在那些事实上可能早已消失得无影无踪的“过去”时,那将会对他产生何等的影响,带来多少烦恼?抑或经过基于大数据的一番难以辩驳的预测,给出一名小学生一个“被规划的未来”,因而让基于他过去的数据决定了他的未来,那将意味着什么?有时候,这样的思考可能会让人感到“细思恐极”。
此外,在大数据面前,个人隐私如何得到有效保护,以及能够拥有和利用大数据学习的学生能否因此而更加优秀,而那些不能拥有和利用大数据的学生能否因此而改进和提高的机会更少,从而形成一道不可逾越的“数字鸿沟”?对诸如此类问题的思考,也会让我们觉得,面对大数据的凶猛来势,教育领域是否真的“过于保守”,还需要分情况界定,因为过犹不及,保守和冒进往往是事物的两端。
数据无情人有情。正如迈尔·舍恩伯格所说,大数据的背后其实是人的问题。那么,大数据如何得到合理的管控,“取信于人”,为教育和学习所用,就成了一个极为迫切且值得深思的问题。
“合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下。”无论如何,面对大数据这一认识世界的新方式,还是要从认识大数据本身开始。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08