京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关于大的内容已经铺天盖地了,其中包括很多能够让人们从中得到启发和洞察的数据科学观点,尤其是在这数据量极其丰富的市场行业中,这样的文章不胜枚举。
在人们谈论了很多关于的话题之后,那么小数据现在的境况如何呢?如果你的手中的数据量很少,甚至谈不上大数据的话,我们又将从这少量的数据当中得到怎样的启发呢?那么小数据什么时候可以适合市场、竞争对手以及采购商的研究需求呢?
作为一名研究人员,我对采购商、市场以及竞争对手的研究已有将近20年的时间,很多人都问过我这样的问题:到底需要多少数据观点才能让我们做出的决策“好的不要要不的”。其实,从事消费者市场研究的客户们都期待得到有这样关键词的答案:“可信度”和“偏差幅度”。
在B2B研究领域当中,研究人员经常会通过三角剖分方法捕捉采购商反馈的细节,对于每个项目而言,获取10个数据观点就能够得到对以下方面的洞察:
“10个数据观点怎么就够了呢?”,很多客户一直用这种不相信的语气问我。
伴随着采购商和企业正不断地向供应商提出更加具体的需求,因此B2B市场正在向高度专业化的方向发展。采购商非常明确地知道自己对于产品的功能、价格、服务以及售后支持等方面的需求和期待。
因为定价模式和价格标准当中存在的变量很少,B2B产业通常在市场及细分市场当中都是统一定价。企业已经在保证产品竞争力的前提下制定出了可以让买卖双方接受的利润。
推销综合型B2B平台的销售团队在他们自己的领域当中经验颇丰。他们这些人不仅仅精通自己所销售的解决方案技术,他们所在的公司也会抓取市场、竞争对手乃至定价方面的信息。
B2B的客户管理团队在和那些要求苛刻并且老练的采购商互动时,通常需要具备非常专业和娴熟的技巧。最优秀的B2B代表可能已经拥有十多年的销售经验,而且目前他们也正在不断接受新的培训和教育。
钻研B2B市场的研究人员在了解行业动态和发展成效的时候经常使用各种技术手段。那些采购周期很长(几个月甚至几年)的资深采购人员很少在网上发布一份由一百多个问题组成的意见征求表,因为这种方式在消费者调查当中很常见。相反,研究人员通过对采购专员情感上的细节的探究发现,其实他们更关心的是下面这些问题,包括:
产品/服务质量
销售团队的效率
供应商的看法
定价
当B2B的研究采用网上调查问卷方式进行的话,在调查问卷发布之后,经常还会有后续电话访问,这样可以让研究人员对入围名单当中的供应商的关键性优势和弱势有一个全新的审视,也可以为供应商的取舍提供更多细节方面的参考。
因为大多数的B2B产业研究人员在特定行业和细分市场当中都有很多经验,所以电话随访环节他们经常会问一些充满大智慧的问题,从而得到真正意义上对交易成果的理解。
和B2B采购商之间的交谈就像一场宴会上的谈话一样——这样的对话看起来更像两个行业专家之间反复好几个回合思想碰撞,而不像一个未经培训的研究人员那样照本宣科般生硬的电话访谈。
因为这样的访问大都是被录音的,这样的话,研究人员可以在谈话的过程当中随时思考对方正在说什么,而不会因为做笔记分散注意力,从而更能激发出下一个将要向对方要抛出的问题。
由于B2B市场有着自己的特质并且采取了上文列举的方法,研究人员和经理可以清晰并快速地发现数据当中存在的模式和趋势。下面就介绍几个在我的B2B研究职业生涯当中,利用小数据产生大发现的案例。
医疗保健公司A经过八次访问之后发现,客户最关心的就是A公司产品以及服务的成本和灵活性。他们从中还发现,竞争对手公司正在试图与A公司的客户群建立关系,试图暴露A公司可能存在的瑕疵,并使用竞争活动的方式剥离A公司的客户群。
一家网络储存公司经过九次调查访问后发现,客户认为该公司在市场中提供的服务是比较轻捷便利的。而且客户也对该公司缺少全球范围内7×24小时的客户服务以及缺少和其他行业关键成员之间的整合表示关心。
一家财产保险公司仅仅通过四次与关键客户之间的调查访问后就知道如何对自己进行定位并维持公司的业务,包括更改公司的续约时间政策,修正公司的定价策略,并突出公司的差异化竞争。
随着时间的流逝,企业收集到的越来越多的数据可以有助于公司弥补发展时遇到的空白,还可以帮助公司将困扰自身已久的问题转化成梦寐以求的答案。公司能够而且应该从他们的小数据研究项目当中获取学习总结,并据此找到采取行动的有效方式,尤其是当公司从客户处获得了一致的反馈信息,那么公司就更应该根据这些具体的指导建议做出下一步的发展计划。
千万不要等到你的公司有大数据的时候才想起来从中获取有价值的参考信息,如果等到那时候,你的采购商会因为你而感到很沮丧,同时你的优柔寡断和坐以待毙的行为会为竞争对手提供可乘之机。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29