
史上最实用的大数据实施系统计划
大数据——这个词看起来比较深奥,一般非专业人士听着觉得相对复杂,觉得可能需要很大成本来部署和实施。然而幸运地是市面上已经有一些云服务来帮助我们让大数据变得更简单。另外,如果你选择合适的工具,也往往会使你的大数据之路起到事半功倍的效果。
因此在实际应用上,大数据的实际实施系统可以有很多种方式。通过你的预算和思考规划,你将能使用最便捷、最实用、又最低成本的大数据实施系统。
在选择据具体大数据工具之前,你最好回答三个问题:
1. 你的数据有多大?
2. 你希望你的数据查询要多快?
3. 你想要怎样展现数据?
第一个问题决定你需要什么样的大数据存储系统,第二个问题决定你需要什么样的查询或者执行引擎。第三个问题决定了你需要怎样功能的相关数据可视化工具。第三个问题相对简单,市面上的数据可视化工具特色明显:大数据魔镜可视化效果达500种以上,展现效果绚丽,适合需要多种展现方式的数据;Tableau可视化效果少,但数据展示功能依然很强,能够直观展示普通可视化需求的数据。
下面是基于对前两个问题的不同回答,推荐采用的一些工具。
1. 超大数据(几百TB),查询时间容忍度很高(几小时)
这个是批处理(batch processing)适用的场景。一个可行的方案是:AWS S3 + Apache Spark。你可以执行Spark任务,读取S3中的数据,然后将计算结果存成CSV文件,最后用Excel分析或者可视化结果。
2. 中等规模数据(几十TB),希望查询快速响应(几秒钟)
这个通常是交互式查询适用的场景。一个可行的方案是:AWS Redshift + Tableau。 Redshift提供低延迟查询处理,Tableau提供很好的数据可视化功能,二者结合起来可以轻松的分析大量数据,只是需要一定的成本。需要提醒的是,你最好提前规划好 Redshift集群的规模和容量,减少随机动态调整, 因为在Redshift中,扩展集群(scale up or scale out)是个比较痛苦的过程。
3. 中等规模数据(几十TB),一定的查询响应容忍度(几分钟),低成本
这个场景适用于预算有限的情况,或者你不想在AWS Redshift和Tableau上投入太多。你将需要对大数据比较了解的开发人员,从而可以自己搭建企业内部的大数据集群。一个可行的解决方案是:Apache Cassandra + Presto Query Engine + H2 Console (from H2 Database Engine)。
Cassandra提供高可靠性大数据存储系统,并且比较容易部署。Presto提供分布式SQL执行引擎,可以运行在Cassandra之上,并提供 JDBC支持。H2 Console是一个简单但是有效的Web界面,用来查询JDBC数据源。利用这些工具组合,你不需要任何编程工作,就可以在企业内部搭建起一个端到端大数据解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08