
“物联网”巧用大数据
物联网究竟是什么?就其本质而言,物联网是一个广泛的生态系统,涵盖连接到互联网的众多普通物品,这些物品能够自报身份,并将数据传送给同一网络上的其他物品。
物联网的基本架构包括一项跟踪技术,比如RFID或条形码、传感器、嵌入式软件和无线互联网连接。“应答器节点”贴在卡车和药瓶等物品上,以独特的方式向互联网自报身份。通过把几乎各种类型的产品或设备(车辆、施工设备、煤气表及电表、家用电器和自动售货机等)接入Web,物联网就可以允许捕获关于这些物品的信息,因而形成了一个“智能物品”网络,这些智能物品可以积极参与到各种业务流程中。
无处不在的网络连接、低成本传感器,以及让几乎任何东西都可以连接到互联网的微电子学技术,它们共同推动物联网革命向前发展。业内曾经肤浅地认为物联网不会成功。可现在的案例表明,物联网大有希望改变商业,而早期涉足该领域的企业似乎找到了方向。
但如果企业正在研究物联网的商业战略,那就要小心了:前方面临许多技术和管理上的挑战。本文介绍了物联网方面的机会、障碍以及所需的新技能——想充分利用海量数据,势必需要新技能。
商机多多
物联网有望让物品之间互联互通,并收集大量数据,这势必给企业带来显著的经济效益,有些企业已准备最大限度地利用来自联网物理系统的源源不断的实时数据。对它们而言,物联网带来了实打实的好处。
技术咨询公司Mindtree的首席研究员Ronak Sutaria说:“物联网技术允许实时而准确的数据感知,并以无线方式将这些数据传送给连接到互联网的Web应用程序和服务器。这使得我们可以更精确、更准确地监控物理系统。”
Sutaria表示,物联网相关技术已经应用于众多行业。比如说,农业公司在实时监测农作物,以提高农产品质量,并节约耕种所需的资源,包括农药、化肥和水。公用事业公司已部署了智能仪表,监测能源、煤气和水的消耗量。许多市政部门则启动了“智慧城市”项目,帮助缓解交通拥堵、改善废物管理、监测来自手机信号塔的能量辐射以及控制路灯。
一些较为成功的、有借鉴意义的项目来自医疗保健行业。大河医疗中心(Great River Medical Center)是一家医疗机构,它使用微软的Windows Embedded(为用于嵌入式系统而设计的一款操作系统),把其许多医疗设备连接成了一个网络。
大河医疗中心的医药服务主任Darwin Cooley表示,“这个部署项目覆盖了我们的整个医药管理运营,从手术室监控受管制药品的麻醉药工作站,到护士站跟踪和分配药物的自动安全柜,再到药房记录药物量的库存管理旋转式传送带(需要补给药品时,会自动添购)。”这些设备统统连接到一台运行Windows Server以及SQL Server数据库的中央服务器。
Cooley表示,每种药物都编有条形码,采用单剂包装,那样这家医疗中心就能跟踪和控制整个环节的每一步。
“我们的行政管理部门和董事会提出的一大要求就是,提高成本效益。而自动配药不仅提高了效率,还大大降低了人力成本。” Cooley说倒。
该技术让大河医疗中心把药物送到病人手里的时间缩短了67%,由原来平均90分钟缩短至30分钟。此外,这项技术还让药房每年减少了30万美元的费用,并一次性省下了40万美元的库存费用。
将正确的药物更迅速地发给病人,这不仅改善了病人治疗效果,还降低了重新收治率。
困难重重
“要是不克服重重障碍,企业别指望得益于物联网。对于要接入网络的每一个物体,至少需要清点、贴条形码以及交叉核对。”Cooley表示,对大河医疗中心而言,牵涉上千种药物的这个过程历时数月才完成。
显然,部署物联网会带来一系列技术和程序上的挑战,企业只有克服这些挑战,才能得益于互联物理网络。此外,物联网还牵涉IT架构方面的多个技术部分,所以还需要来自企业各部门或者来自企业外部的专业知识。埃森哲技术实验室负责人Mike Redding表示:“物联网本身不是一项技术。你也买不到现成的物联网。”
他还表示,网络服务和应用程序的性能也是部署物联网时要关注的一个问题。比如说,如果一个简单的传感和监测应用程序用于装有100个传感器的地方,收集遥测数据,那么每年生成的原始数据总量可能会超过4PB。
一些在考虑部署物联网的企业面临最大的障碍是,不知道怎么处理收集上来的海量信息。Redding说:“社交媒体、传感器和嵌入式设备增强了之前未曾涉足的领域收集数据的能力。由于许多工具挖掘无数新的非结构化数据源,问题不再是缺少足够的数据,而是确保没有错过真正需要的数据。”
另一个挑战是,获得必要的分析技能以处理海量数据。埃森哲的研究表明,物色一流的分析人才来管理海量数据,这在今后几年会很困难。该公司开展了为期一年的研究项目,结果表明,到2015年,预计美国市场有望为分析专家创造近3.9万个新岗位,但在那些岗位当中,只有23%能找到合格的求职者。
就物联网而言,基本的数据分析技能不顶用,企业将需要既懂得数据分析,又能深入了解这些新数据对其所在行业有什么价值的这类人。
Sutaria说:“应用物联网解决方案的企业需要考察几个关键要素,其中之一就是形成基于数据进行决策的文化。物联网实际上从现实世界提取源源不断的准确数据。如何把这些数据转换成信息,然后转换成知识,最后转换成智慧,这就需要企业拥有传统的分析技能。”
比如在农业领域,科学家必须了解在各种天气条件下农作物需要灌溉多少水。物联网可以自动提供定期收集的准确数据,这些数据关于天气、农场和农作物的每项生长条件。但是一旦收集了数据,就要根据这些数据采取措施,而这有赖于熟悉某个特定领域的科学家。
除此之外,采用物联网技术面临的其他常见障碍包括,传感器、分析功能及需要投入资金。Redding表示,“知识就是力量。充分利用物联网的企业有望获得难以置信的竞争优势。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01