
大数据发展需要“破冰强基”
大数据正在深刻地改变着经济社会生活的方方面面。然而,这一互联网新技术,眼下却遭遇数据难以共享等诸多困难,数据的公信度和共识性因此打折。同时,大数据在应用、交易、法律环境等方面也面临着不少制度性难题。
“高热”之下有“冰点”
盘点当下的高热词,“大数据”是其中之一。但业内专家担忧,“高热”下掩盖着“冰点”,这些“冰点”将阻碍刚刚起步的我国大数据产业的健康成长。
【“冰点”一:大数据应用不足】
阿里巴巴集团副总裁、数据委员会会长车品觉认为,目前,大数据行业最突出的问题是“只见树木,不见森林”。移动互联网、电商等是“重用”大数据的重点领域,而大部分传统企业对此却缺乏意识,甚至还不清楚如何利用数据。
同时,大数据应用的深度也远远不够。“国内的不少企业仅是利用大数据模型做营销方案,而像谷歌、亚马逊等国际知名企业,已将大数据思维全面融入公司管理。”车品觉说。
【“冰点”二:“找不到数据”】
找不到数据是数据应用企业面临的普遍困扰。海尔家电产业集团营销总经理宋照伟直言,海尔希望获知用户的多维度行为习惯,但能够掌握的信息渠道仍然狭窄,信息量不够理想。
“拿走数据的多,贡献数据的少。”贵阳大数据交易所执行总裁王叁寿表示,不少企业以保护商业机密或节省数据整理成本等为理由,不愿意交易自身数据。
【“冰点”三:商业数据“割据”,政府数据“孤立”】
以阿里巴巴旗下的“芝麻信用”为例,其评分依据的数据只来自支付宝平台,本身公信力有限,而其他企业希望能利用支付宝相关数据时,又很难获得。
同样,政府数据公开程度也非常有限。比如,银行在为客户办理信贷业务时,只能查到其在当地的工商信息,无法获知其在外地的情况。
【“冰点”四:侵权还是“个性化推荐”存争议】
对于个人数据隐私保护、数据权属、政府数据公开等问题,目前尚无明确的规定,因此,纠纷时有发生。
以朱烨诉百度侵权案为例,2015年,网民朱烨发现自己用百度搜索关键词后会收到相关广告推送,因此将百度以侵犯隐私权为由告上法庭。法院一审认定百度侵犯朱烨隐私权,但二审却撤销一审判决。中国政法大学传播法中心研究员朱巍表示,两级法院给出截然相反的判决,说明法律界对此类新情况认识不一致。
三大基础性“缺陷”待弥补
专家从三个方面分析了产生上述问题的原因,并认为这是我国大数据产业发展必须加快弥补的三大基础性“缺陷”。
【“缺陷”一:产业信息化尚未完成】
IBM大中华区大数据与分析部数据分析产品线主管洪建勋研究发现,目前国内大量客户还停留在将80%的时间用在数据获取上,还缺乏系统化整理,更谈不上“商务智能”应用了。这和企业信息化水平较低有直接关系。
中国社会科学院信息化研究中心秘书长姜奇平表示,信息化是大数据的基础,而信息化的推进都是先从消费者开始,然后才传导到企业和政府。农业、工业、能源等行业的数据化还需假以时日。
【“缺陷”二:“大数据思维”未成行业共识】
车品觉表示,现在企业大多将大数据作为工具,导致“要数据的不知道大数据从哪里来,做数据的不知道大数据如何用,用数据的人担心真实性不敢用”。
也正是因为“大数据思维”未能达成共识,数据互惠共利的环境难以形成,推动数据共享就比较艰难。
【“缺陷”三:监管和立法滞后】
大数据产业发展之快难以想象,但对于数据权属、个人数据隐私、政府数据公开等,目前都缺乏具有针对性的法律法规。而且,大数据作为新型资源,目前还没有明确专门的监管部门。
朱巍介绍,现在对个人数据的保护,大多依照2012年通过的“关于加强网络信息保护的决定”,这已远远不能适应目前行业的发展现状。
在加快发展中走出“成长烦恼期”
业内人士认为,我国大数据产业在目前乃至较长一段时间或都处于“成长烦恼期”。因此,要在加快发展中探索成长之路。
从规模上看,2015年我国大数据市场仅有102亿元,不及一家股份制银行一年的净利润。而在国内以及境外的资本市场上,还没有出现中国的大数据行业巨头。
关于大数据应用问题,清华大学数据科学研究院执行副院长韩亦舜表示,随着社会信息化程度加深,数据源将更加丰富,大数据应用范围将不断扩大。
对于大数据共享的困境,业内专家指出,这在全球都是一个难题。目前,我国正探索建立大数据交易所,以交易驱动数据共享;有的行业内部已经形成企业间互换数据的惯例。
另外,可以借鉴国外经验,对政府数据进行更好的挖掘、利用,如将非涉密的政府数据放在网上,供社会查阅。
在大数据立法与监管层面,业内人士建议,应确定监管部门,并完善相关立法,加紧制定有关大数据的标准、规则、指引,引导行业规范发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02