京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据发展需要“破冰强基”
大数据正在深刻地改变着经济社会生活的方方面面。然而,这一互联网新技术,眼下却遭遇数据难以共享等诸多困难,数据的公信度和共识性因此打折。同时,大数据在应用、交易、法律环境等方面也面临着不少制度性难题。
“高热”之下有“冰点”
盘点当下的高热词,“大数据”是其中之一。但业内专家担忧,“高热”下掩盖着“冰点”,这些“冰点”将阻碍刚刚起步的我国大数据产业的健康成长。
【“冰点”一:大数据应用不足】
阿里巴巴集团副总裁、数据委员会会长车品觉认为,目前,大数据行业最突出的问题是“只见树木,不见森林”。移动互联网、电商等是“重用”大数据的重点领域,而大部分传统企业对此却缺乏意识,甚至还不清楚如何利用数据。
同时,大数据应用的深度也远远不够。“国内的不少企业仅是利用大数据模型做营销方案,而像谷歌、亚马逊等国际知名企业,已将大数据思维全面融入公司管理。”车品觉说。
【“冰点”二:“找不到数据”】
找不到数据是数据应用企业面临的普遍困扰。海尔家电产业集团营销总经理宋照伟直言,海尔希望获知用户的多维度行为习惯,但能够掌握的信息渠道仍然狭窄,信息量不够理想。
“拿走数据的多,贡献数据的少。”贵阳大数据交易所执行总裁王叁寿表示,不少企业以保护商业机密或节省数据整理成本等为理由,不愿意交易自身数据。
【“冰点”三:商业数据“割据”,政府数据“孤立”】
以阿里巴巴旗下的“芝麻信用”为例,其评分依据的数据只来自支付宝平台,本身公信力有限,而其他企业希望能利用支付宝相关数据时,又很难获得。
同样,政府数据公开程度也非常有限。比如,银行在为客户办理信贷业务时,只能查到其在当地的工商信息,无法获知其在外地的情况。
【“冰点”四:侵权还是“个性化推荐”存争议】
对于个人数据隐私保护、数据权属、政府数据公开等问题,目前尚无明确的规定,因此,纠纷时有发生。
以朱烨诉百度侵权案为例,2015年,网民朱烨发现自己用百度搜索关键词后会收到相关广告推送,因此将百度以侵犯隐私权为由告上法庭。法院一审认定百度侵犯朱烨隐私权,但二审却撤销一审判决。中国政法大学传播法中心研究员朱巍表示,两级法院给出截然相反的判决,说明法律界对此类新情况认识不一致。
三大基础性“缺陷”待弥补
专家从三个方面分析了产生上述问题的原因,并认为这是我国大数据产业发展必须加快弥补的三大基础性“缺陷”。
【“缺陷”一:产业信息化尚未完成】
IBM大中华区大数据与分析部数据分析产品线主管洪建勋研究发现,目前国内大量客户还停留在将80%的时间用在数据获取上,还缺乏系统化整理,更谈不上“商务智能”应用了。这和企业信息化水平较低有直接关系。
中国社会科学院信息化研究中心秘书长姜奇平表示,信息化是大数据的基础,而信息化的推进都是先从消费者开始,然后才传导到企业和政府。农业、工业、能源等行业的数据化还需假以时日。
【“缺陷”二:“大数据思维”未成行业共识】
车品觉表示,现在企业大多将大数据作为工具,导致“要数据的不知道大数据从哪里来,做数据的不知道大数据如何用,用数据的人担心真实性不敢用”。
也正是因为“大数据思维”未能达成共识,数据互惠共利的环境难以形成,推动数据共享就比较艰难。
【“缺陷”三:监管和立法滞后】
大数据产业发展之快难以想象,但对于数据权属、个人数据隐私、政府数据公开等,目前都缺乏具有针对性的法律法规。而且,大数据作为新型资源,目前还没有明确专门的监管部门。
朱巍介绍,现在对个人数据的保护,大多依照2012年通过的“关于加强网络信息保护的决定”,这已远远不能适应目前行业的发展现状。
在加快发展中走出“成长烦恼期”
业内人士认为,我国大数据产业在目前乃至较长一段时间或都处于“成长烦恼期”。因此,要在加快发展中探索成长之路。
从规模上看,2015年我国大数据市场仅有102亿元,不及一家股份制银行一年的净利润。而在国内以及境外的资本市场上,还没有出现中国的大数据行业巨头。
关于大数据应用问题,清华大学数据科学研究院执行副院长韩亦舜表示,随着社会信息化程度加深,数据源将更加丰富,大数据应用范围将不断扩大。
对于大数据共享的困境,业内专家指出,这在全球都是一个难题。目前,我国正探索建立大数据交易所,以交易驱动数据共享;有的行业内部已经形成企业间互换数据的惯例。
另外,可以借鉴国外经验,对政府数据进行更好的挖掘、利用,如将非涉密的政府数据放在网上,供社会查阅。
在大数据立法与监管层面,业内人士建议,应确定监管部门,并完善相关立法,加紧制定有关大数据的标准、规则、指引,引导行业规范发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22