
大数据时代 解读数字营销七大新趋势
如今,当人们谈到欺诈时,可能第一个想到的是银行,事实也是如此——银行是最容易受到威胁的行业。但过去Interac Association的一份报告显示在加拿大借记卡欺诈损失实际上已经下降了62%,而且到了2013年受益于芯片和PIN技术的发展,随着一些安全性高、欺诈检测机制发展起来,可以帮助企业实时检测到欺诈行为,提升惩治犯罪机率。
图片来源theglobeandmail.com
对于欺诈率下降是个好消息,但是相比好消息,技术的发展不可能消除诈骗犯罪,欺诈者仍然能够利用许多其他方法从个人和企业那里谋取金钱和资产。
幸运的是,通过收集起来了大量的数据,分析这些数据能够检测出正在进行的诈骗行为,或许能够帮助公司和执法者从中找到解决方案。作为SAS加拿大安全情报实践的负责人,Dan Nagle针对目前存在四个领域,在检测欺诈行为方面对这四个领域的技术进行分析。
医疗卫生领域
正如分析所讲,很多人通过伪造医药处方来获取限制药物(如Oxycontin),犯罪分子通常强迫弱势人群填写相关医药处方,然后获取这些限制药物进而转售获利。
医疗卫生领域(图片来源alzinfo.org)
医疗卫生组织要建立一个系统,确保药房及其他一些人的行为合法,可以将正常药品购买行为和违法行为区分开。大数据系统需要审查处方内容以及购买的地点,确定在每次交易中存在欺诈的潜在可能性。并通过分析软件使用复杂的算法来发现非法活动中的一般模式,以及时对违法行为作出行动。
这一套系统为系统管理员提供了实时报警功能,帮助在监控中发现存在药品滥用的违法行为——通常从业人员(如:医生或药店),或者是病人是受到勒索被迫填假处方的受害者。
能源领域
能源领域中也因欺诈造成了巨额损失。非法(有些还披着“合法”的外衣)企业或组织通过各种途径从避免电费的支出,或是通过盗取其他组织的电力,或通过迂回的方式直接连接到馈电线路。
电力公司需要实时测量,了解每个客户使用电源的情况,以便可以更准确地预测需求和对电量进行调整。而面对大量的数据困扰,需要从中找到电力盗窃的证据,而他们面临的最大挑战是如何从大量数据中筛选出来进而寻找证据,而且事实上数据无法长时间保存,这意味着电力公司必须做到实时的欺诈检测。
电力盗窃(图片来源blogspot.com)
解决方案:基于智能电表的分析系统,通过监测电力系统中不正常的表现,并将分析工具和工程系统发出的信号相结合来检测违规行为。SAS公司通过这个方案意外地发现了测定大麻生长所在位置的方法。
金融信用卡领域
正如开篇提到欺诈的首要行业——金融,解决信用卡和借记卡欺诈仍然需要欺诈检测技术,尽管欺诈犯罪在下降,但金融欺诈仍是一个急需解决的问题,加拿大的两大银行汇丰和Laurentian通过数据分析来解决这一难题。
汇丰银行重点是评估出每一次信用卡交易潜在的风险。拒绝一个合法用户的操作和允许非法交易都是系统所不想得到的效果,因此数据分析需要很高的可靠性和实时性,避免客户合法交易被阻止转向其他家银行的尴尬。
另一个案例,Laurentian系统则致力于利用数据挖掘出周期性诈骗行为(如:洗钱)。为了做到这一点,Laurentian将欺诈检测与其他系统整合到一起,了解每一个客户交易的详细信息、用户之间的关联等信息,无论资金流动情况如何复杂,银行都能通过分析来确定交易是否合法。
赌博业
看过Oceans 11(十一罗汉)电影会感受到在线和离线的赌场相对于金融企业存在着更多的欺诈风险,诈骗者侵入合法玩家的账户,通过侵入这些账户进行盗窃或洗钱等违法行为。由此,分析系统为每个赌徒建立了相应的信息文档,可以实时了解信息,甚至指纹信息。在出现异样时候,该系统就可以立即向赌场发出警报。
可见,大数据分析系统对欺诈行为进行积极主动的打击区别于传统方法,传统方法只能在欺诈发生后,依靠取证来打击犯罪。随着网络犯罪的增长,未来通过大数据分析预测犯罪、制止犯罪将成为重要的发展趋势。CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07