
大数据时代 解读数字营销七大新趋势
如今,当人们谈到欺诈时,可能第一个想到的是银行,事实也是如此——银行是最容易受到威胁的行业。但过去Interac Association的一份报告显示在加拿大借记卡欺诈损失实际上已经下降了62%,而且到了2013年受益于芯片和PIN技术的发展,随着一些安全性高、欺诈检测机制发展起来,可以帮助企业实时检测到欺诈行为,提升惩治犯罪机率。
图片来源theglobeandmail.com
对于欺诈率下降是个好消息,但是相比好消息,技术的发展不可能消除诈骗犯罪,欺诈者仍然能够利用许多其他方法从个人和企业那里谋取金钱和资产。
幸运的是,通过收集起来了大量的数据,分析这些数据能够检测出正在进行的诈骗行为,或许能够帮助公司和执法者从中找到解决方案。作为SAS加拿大安全情报实践的负责人,Dan Nagle针对目前存在四个领域,在检测欺诈行为方面对这四个领域的技术进行分析。
医疗卫生领域
正如分析所讲,很多人通过伪造医药处方来获取限制药物(如Oxycontin),犯罪分子通常强迫弱势人群填写相关医药处方,然后获取这些限制药物进而转售获利。
医疗卫生领域(图片来源alzinfo.org)
医疗卫生组织要建立一个系统,确保药房及其他一些人的行为合法,可以将正常药品购买行为和违法行为区分开。大数据系统需要审查处方内容以及购买的地点,确定在每次交易中存在欺诈的潜在可能性。并通过分析软件使用复杂的算法来发现非法活动中的一般模式,以及时对违法行为作出行动。
这一套系统为系统管理员提供了实时报警功能,帮助在监控中发现存在药品滥用的违法行为——通常从业人员(如:医生或药店),或者是病人是受到勒索被迫填假处方的受害者。
能源领域
能源领域中也因欺诈造成了巨额损失。非法(有些还披着“合法”的外衣)企业或组织通过各种途径从避免电费的支出,或是通过盗取其他组织的电力,或通过迂回的方式直接连接到馈电线路。
电力公司需要实时测量,了解每个客户使用电源的情况,以便可以更准确地预测需求和对电量进行调整。而面对大量的数据困扰,需要从中找到电力盗窃的证据,而他们面临的最大挑战是如何从大量数据中筛选出来进而寻找证据,而且事实上数据无法长时间保存,这意味着电力公司必须做到实时的欺诈检测。
电力盗窃(图片来源blogspot.com)
解决方案:基于智能电表的分析系统,通过监测电力系统中不正常的表现,并将分析工具和工程系统发出的信号相结合来检测违规行为。SAS公司通过这个方案意外地发现了测定大麻生长所在位置的方法。
金融信用卡领域
正如开篇提到欺诈的首要行业——金融,解决信用卡和借记卡欺诈仍然需要欺诈检测技术,尽管欺诈犯罪在下降,但金融欺诈仍是一个急需解决的问题,加拿大的两大银行汇丰和Laurentian通过数据分析来解决这一难题。
汇丰银行重点是评估出每一次信用卡交易潜在的风险。拒绝一个合法用户的操作和允许非法交易都是系统所不想得到的效果,因此数据分析需要很高的可靠性和实时性,避免客户合法交易被阻止转向其他家银行的尴尬。
另一个案例,Laurentian系统则致力于利用数据挖掘出周期性诈骗行为(如:洗钱)。为了做到这一点,Laurentian将欺诈检测与其他系统整合到一起,了解每一个客户交易的详细信息、用户之间的关联等信息,无论资金流动情况如何复杂,银行都能通过分析来确定交易是否合法。
赌博业
看过Oceans 11(十一罗汉)电影会感受到在线和离线的赌场相对于金融企业存在着更多的欺诈风险,诈骗者侵入合法玩家的账户,通过侵入这些账户进行盗窃或洗钱等违法行为。由此,分析系统为每个赌徒建立了相应的信息文档,可以实时了解信息,甚至指纹信息。在出现异样时候,该系统就可以立即向赌场发出警报。
可见,大数据分析系统对欺诈行为进行积极主动的打击区别于传统方法,传统方法只能在欺诈发生后,依靠取证来打击犯罪。随着网络犯罪的增长,未来通过大数据分析预测犯罪、制止犯罪将成为重要的发展趋势。CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15