京公网安备 11010802034615号
经营许可证编号:京B2-20210330
物联网数据分析何时迎娶超级计算机?
物联网的设备和传感器会产生许多数据,分析这些数据获取可行性见解将会有远大的发展前景。
在许多企业满足于使用小额的投资,慢条斯理地进行数据分析的同时,那些需要进行及时和复杂的数据分析的企业正从超级计算机工业的快速成长和进步中获益。
来自于Cray公司高级副总裁兼首席策略官Barry Bolding的建议:当数据分析的时效性是关键因素时,企业应该考虑选择超级计算资源方案来进行数据分析。
Bolding 说:“假设你要将物联网的数据快速输入模拟器或者数据模型,及时得到输出数据时,在这种应用场景下,使用Cray资源(超级计算资源)而不是云资源可以非常有效的消除系统的瓶颈。”
这是一个重要的区别,因为许多企业的首选是云计算解决方案,即便数据分析速度的对于他们来说比较重要,他们认为有着更快的时效性的超级计算意味着更高的成本。
然而,据IDC公司分析师Steve Conway分析,企业之所以做出这样的判断,是因为他们没有充分认识到高性能的计算资源给他们带来的成本收益的权衡。Conway认为:”即便在大公司,他们对于超级计算机的观念已经过时了。”
当然这并不是说每个企业都要用超级计算机来进行物联网的数据分析。最终,需要极快地分析数据的企业将会选择超级计算机,与此同时,那些对物联网数据分析的时效性要求不高的企业可以放心地选择基于云计算的方案。
Cray成立于1972年,是世界上历史悠久,规模最大的超级计算机提供商之一,它占有31%的市场份额,世界上10台最强的超级计算机有5台是它制造的。
这些年Cray公司和超级计算机市场总体发展艰难,受到了高性能、低成本的小型计算机的冲击。但是最近这个形势发生了变化。“市场开始分裂了,而且持续进行分裂,这因为更多的企业购买超级计算机,而不是只有政府部门。”Conway说。
他表示,曾经动辄数百万美金,只有少数的政府机构使用的超级计算机,现在80%的超级计算机成本已经低于100,000美元。
这使得许多的企业能够购买得起这些超级计算机。尽管从成本经济的角度考虑,不同的用户使用场景对超级计算机的青睐程度有着巨大的不同。
物 联网就是一个非常合适使用超级计算机的用户场景。因为它会产生大量的数据。但是不同的企业对物联网有着不同的使用方式,这个使得我们很难划定一个清晰的界 限决定什么时候应该使用超级计算资源。在大多数的情况下,一些公司可以接受等待一段较长时间的数据分析报告,然而对于其他的公司来说,数据分析的时效性是 日常工作中至关重要的部分。
例如连网汽车,它依靠大量的交通数据来回传递来进行操作。超级计算机将从每个连网的汽车获取交通数据,经过实时交通数据管理平台分析上传来的数据,然后回传路线信息给相应的汽车。
如果分析不是实时进行,回传给汽车的线路信息总是慢于移动中的汽车,那么这些信息对于行进中的汽车是毫无用处的。所以Conway认为这就是为什么交通数据分析是典型的使用超级计算机的用户场景,因为它完全依赖于实时的数据分析洞察。
对于时效性的要求是确定某一个用户场景是否需要超级计算机的决定因素。Bolding总结了三个标准来说明什么情况下需要超级计算机。
Bolding 认为从长期的使用的角度来看,一次性投资超级计算机的解决方案和每个月须付高额的服务费的云方案相比较,超级计算机的成本更便宜。
这是基于Cray公司内部成本预测模型进行的分析,还未公布于众,对其正确性持有保留的观点。但是Conway认同还是有些用户场景选择采用超级计算机,可以取得成本效益率的最大化。
有大量的用户场景是不符合Bolding使用超级计算机的标准,例如商店用来追踪用户进进出出的传感数据就不需要超级计算机。Bolding在一定程度上也认同这样的情形。
Bolding说: “对于很多的物联网应用来说,分析速度并不是关键, 所以我们对中小企业的用户还没进行推广使用超级计算机”
但是有趣的是有些公司尽管切合Bolding使用超级计算机的标准,他们仍然没有选择使用超级计算机。
例 如,虽然GE公司在它的科研中有使用超级计算资源,但是GE公司的一定数量的应用仍是依赖于基于云的Predix engine分析其物联网感应器产生的数据。GE公司很多部门每天都在使用Predix来进行数据分析。他们并没有感受到更快处理速度的超级计算机因高投 资带来的高效益。
“依我们观察,大部分的用户场景并不需要额外的计算能力”, GE运输软件首席技术官Wesley Mukai说,”目前我们还没有看到需要更多计算能力的应用。”
Mukai说依赖于云会给开发带来了一定的困难,程序员需要修复当某个组件宕机的情况,但是成本经济学要求他们只能采用云解决方案。
Conway认为实际情况也许不是这样的,他认为真正的原因是缺乏对当今超级计算机能力和成本有个清晰的认识。 Conway说: “在那些已经开始使用超级计算机的公司中,有很大一部分的公司之前就有使用超级计算资源。”
然而,Conway又说了:”你不必过度采购, 即便人们不使用超级计算机来处理大量的数据,事情还是照样的做。”
事实上,云解决方案很适合大数据的使用场景,Conway以诺华制药公司为例解释,这家公司就使用Amazon Web Services在4个小时的时间内分析2千1百万个分子。
Conway 认为这不是物联网的使用场景, 但是这是一个很好的运用云计算解决方案的例子。因为每个测试分子任务都有自己独立的进程,即便一个组件宕机了,整个分析任务不需要重现启动。而且诺华公司 只需要支付一定金额大概20,000美元就可以完成这些测试,如果可以耐心等待更长的时间输出分析结果,他们将付的更少。
关键的因素是分析速度。云可以处理大量数据,在一定程度上也可以处理复杂问题,但是如果分析速度是关键因素,公司期望在几分钟或者几秒钟而不是4个小时或者1个小时内获取答案,那么我们就需要超级计算机的解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29