
物联网数据分析何时迎娶超级计算机?
物联网的设备和传感器会产生许多数据,分析这些数据获取可行性见解将会有远大的发展前景。
在许多企业满足于使用小额的投资,慢条斯理地进行数据分析的同时,那些需要进行及时和复杂的数据分析的企业正从超级计算机工业的快速成长和进步中获益。
来自于Cray公司高级副总裁兼首席策略官Barry Bolding的建议:当数据分析的时效性是关键因素时,企业应该考虑选择超级计算资源方案来进行数据分析。
Bolding 说:“假设你要将物联网的数据快速输入模拟器或者数据模型,及时得到输出数据时,在这种应用场景下,使用Cray资源(超级计算资源)而不是云资源可以非常有效的消除系统的瓶颈。”
这是一个重要的区别,因为许多企业的首选是云计算解决方案,即便数据分析速度的对于他们来说比较重要,他们认为有着更快的时效性的超级计算意味着更高的成本。
然而,据IDC公司分析师Steve Conway分析,企业之所以做出这样的判断,是因为他们没有充分认识到高性能的计算资源给他们带来的成本收益的权衡。Conway认为:”即便在大公司,他们对于超级计算机的观念已经过时了。”
当然这并不是说每个企业都要用超级计算机来进行物联网的数据分析。最终,需要极快地分析数据的企业将会选择超级计算机,与此同时,那些对物联网数据分析的时效性要求不高的企业可以放心地选择基于云计算的方案。
Cray成立于1972年,是世界上历史悠久,规模最大的超级计算机提供商之一,它占有31%的市场份额,世界上10台最强的超级计算机有5台是它制造的。
这些年Cray公司和超级计算机市场总体发展艰难,受到了高性能、低成本的小型计算机的冲击。但是最近这个形势发生了变化。“市场开始分裂了,而且持续进行分裂,这因为更多的企业购买超级计算机,而不是只有政府部门。”Conway说。
他表示,曾经动辄数百万美金,只有少数的政府机构使用的超级计算机,现在80%的超级计算机成本已经低于100,000美元。
这使得许多的企业能够购买得起这些超级计算机。尽管从成本经济的角度考虑,不同的用户使用场景对超级计算机的青睐程度有着巨大的不同。
物 联网就是一个非常合适使用超级计算机的用户场景。因为它会产生大量的数据。但是不同的企业对物联网有着不同的使用方式,这个使得我们很难划定一个清晰的界 限决定什么时候应该使用超级计算资源。在大多数的情况下,一些公司可以接受等待一段较长时间的数据分析报告,然而对于其他的公司来说,数据分析的时效性是 日常工作中至关重要的部分。
例如连网汽车,它依靠大量的交通数据来回传递来进行操作。超级计算机将从每个连网的汽车获取交通数据,经过实时交通数据管理平台分析上传来的数据,然后回传路线信息给相应的汽车。
如果分析不是实时进行,回传给汽车的线路信息总是慢于移动中的汽车,那么这些信息对于行进中的汽车是毫无用处的。所以Conway认为这就是为什么交通数据分析是典型的使用超级计算机的用户场景,因为它完全依赖于实时的数据分析洞察。
对于时效性的要求是确定某一个用户场景是否需要超级计算机的决定因素。Bolding总结了三个标准来说明什么情况下需要超级计算机。
Bolding 认为从长期的使用的角度来看,一次性投资超级计算机的解决方案和每个月须付高额的服务费的云方案相比较,超级计算机的成本更便宜。
这是基于Cray公司内部成本预测模型进行的分析,还未公布于众,对其正确性持有保留的观点。但是Conway认同还是有些用户场景选择采用超级计算机,可以取得成本效益率的最大化。
有大量的用户场景是不符合Bolding使用超级计算机的标准,例如商店用来追踪用户进进出出的传感数据就不需要超级计算机。Bolding在一定程度上也认同这样的情形。
Bolding说: “对于很多的物联网应用来说,分析速度并不是关键, 所以我们对中小企业的用户还没进行推广使用超级计算机”
但是有趣的是有些公司尽管切合Bolding使用超级计算机的标准,他们仍然没有选择使用超级计算机。
例 如,虽然GE公司在它的科研中有使用超级计算资源,但是GE公司的一定数量的应用仍是依赖于基于云的Predix engine分析其物联网感应器产生的数据。GE公司很多部门每天都在使用Predix来进行数据分析。他们并没有感受到更快处理速度的超级计算机因高投 资带来的高效益。
“依我们观察,大部分的用户场景并不需要额外的计算能力”, GE运输软件首席技术官Wesley Mukai说,”目前我们还没有看到需要更多计算能力的应用。”
Mukai说依赖于云会给开发带来了一定的困难,程序员需要修复当某个组件宕机的情况,但是成本经济学要求他们只能采用云解决方案。
Conway认为实际情况也许不是这样的,他认为真正的原因是缺乏对当今超级计算机能力和成本有个清晰的认识。 Conway说: “在那些已经开始使用超级计算机的公司中,有很大一部分的公司之前就有使用超级计算资源。”
然而,Conway又说了:”你不必过度采购, 即便人们不使用超级计算机来处理大量的数据,事情还是照样的做。”
事实上,云解决方案很适合大数据的使用场景,Conway以诺华制药公司为例解释,这家公司就使用Amazon Web Services在4个小时的时间内分析2千1百万个分子。
Conway 认为这不是物联网的使用场景, 但是这是一个很好的运用云计算解决方案的例子。因为每个测试分子任务都有自己独立的进程,即便一个组件宕机了,整个分析任务不需要重现启动。而且诺华公司 只需要支付一定金额大概20,000美元就可以完成这些测试,如果可以耐心等待更长的时间输出分析结果,他们将付的更少。
关键的因素是分析速度。云可以处理大量数据,在一定程度上也可以处理复杂问题,但是如果分析速度是关键因素,公司期望在几分钟或者几秒钟而不是4个小时或者1个小时内获取答案,那么我们就需要超级计算机的解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29