京公网安备 11010802034615号
经营许可证编号:京B2-20210330
过度忠于数据和分析,影响员工流失率
让我们回到1911年去探究原因。那是进步主义(Progressivism)时代。那一年泰勒在《科学管理原则》(The Principles of Scientific Management)一书的引言中写道:“在过去人是最重要的;在未来系统必定是最重要的。”泰勒的想法与伍德罗·威尔逊(Woodrow Wilson)不谋而合——后一年威尔逊当选为美国总统。威尔逊认为社会工程(socialengineering)优先于个人权利。
泰勒提出了一个简单的想法:如果你能找出并消除所有浪费时间的不合理动作,你就能提高劳动生产率。要做到这一点,管理者得观察、记录、衡量和分析工人的动作。在工厂车间里员工不再随心所欲地行动;不再采用“随机应变”的做法。泰勒希望将复杂的制造工艺简化为最细微、最具重复性的步骤,使任何工人都能上手。
可以预见,泰勒主义(Taylorism)需要对工人及其工作实践进行近乎专制的控制。泰勒将其发起的运动视为工人的救星,原因是生产率提高的工人能赚到更多的钱。工人们确实赚到了更多的钱。泰勒的理论在亨利·福特(Henry Ford)的汽车制造厂的流水线上得到了完美实现。而 且正如泰勒曾预测的,福特向生产率最高的工人支付的工资,是当时工厂作业一般工资水平的2倍。
但福特对泰勒式严密分析的应用无法适应二战后的市场变化。然而通用汽车公司的阿尔弗雷德·斯隆(Alfred Sloan)有更深入的见解。他明白单靠分析无法打造一家强健的企业。斯隆明白,人类所追求的不只是功利;他们也渴望生活的意义。在斯隆的管理下,通用汽车根据人们愿望层次的不同对汽车市场进行细分,从经济实惠的雪佛兰到豪华型的凯迪拉克。该公司得以蓬勃发展。
科学管理——及其对数据和趋势分析的过度依赖倾向——是诱人的,因为它可衡量,能提供快速投资回报,因此很容易被证明是合理的。这一点在当今时代尤其适用,因为收集、分析数据的成本下降速度甚至快于摩尔定律。数据和分析似乎是医治企业病痛的速效药。
危险并不在于使用数据和分析——不这样做的管理人员是傻瓜——而在于对其过度依赖。它们的优势很快会被竞争冲垮。更糟的是,拘泥于数据和分析总是会导致强烈的对抗:员工会反抗;客户会流失;股东想知道是什么让自己遭受打击的。
泰勒的缺陷是致命的。他认为员工懒惰、无知、缺乏好奇心,敦促管理者将其视为可替换的零件。他提倡实行极端的可预测性和管理控制,这使得员工的工作内容变得沉闷乏味,尽管这种做法提高了他们的工资。泰勒认为这种折衷是值得的。一开始员工们也这么想——直到他们改变了看法。
泰勒的错误会重演吗?已经开始了。亚马逊像杂草一样疯狂成长,但它不能或不会出现盈利,投资者正在失去耐心。亚马逊效忠于数据和分析的做法,但其员工流失率无论在高科技还是零售行业都是最高的。这意味着亚马逊由数据驱动的非凡效率被招聘、再培训及挽留的较高成本所伤害。
相比之下,苹果公司(Apple)是全球最有价值的企业,其业务和财务是由数据驱动的。但创建该公司并领导其复兴的史蒂夫·乔布斯(Steve Jobs)从未将人类的非理性视为应该被消灭的弱点。乔布斯接受并激励人性混乱的一面。他怀疑市场数据——他很少出错。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01