京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【总结】竞品分析报告撰写的方法
一份优(有)秀(用)的竞品分析报告,不是说简单地找几个类似的产品,罗列几个功能,说几个优缺点就可以的,其中往往包括了很多文案撰写逻辑,对比分析方法论,还有最重要的是作者说了一大通分析之后的问题解决思路。
那么正确撰写竞品分析的姿势应该系怎样的呢?
竞品分析三步曲
①选择分析目标:明确竞品分析的重点和需要解决的问题;选择合适的竞品(业务相同或者相关的产品)
②对比和分析:按照若干维度(产品功能、交互设计、运营策略等)对产品和竞品进行逐项罗列对比和分析优劣
③讨论和提出解决思路:根据第一步的确立的分析重点和第二步相关维度的对比进行综合讨论分析,进一步可结合时下的行业发展趋势,提出符合逻辑的解决方案思路。
1、设定分析目标
很多新人和童鞋(包括曾经的卤煮)在第一次写竞品分析的时候,往往都会过于侧重直接去对比分析,而忽视了如何筛选竞品,为何做竞品分析,分析的重点是什么,需要解决什么问题等细节。
“选择重于分析”–网易著名设计师刘津
而在这里我引申为“选择分析目标”。这里包含两类目标:
①分析的侧重点:任何一份报告都有一个中心点,竞品分析一般也会围绕一个核心(公司的发展方向、产品的迭代方向等)去展开,这个核心就是分析讨论的侧重点,需要作者花费更多篇幅去做详细论述,否则面面俱到只会让自己陷在精力崩溃、读者阅读乏味的泥沼中。
栗子:卤煮之前写过一篇社交产品的竞品分析,目的是探寻一种更nice的构建陌生人关系的方法和怎样帮助陌生人社交平台沉淀用户关系链。至于社交平台怎样流量变现、运营策略这些就不是侧重点,简单对比即可,少花精力分析。
②选择竞品:选对了竞品事半功倍,选错了后悔一生。竞品分析的唯一前提就是竞品,如果你竞品都选错了,浪费工作量不说,得出错误结论祸害团队那才是致命的。
栗子:还是卤煮那篇文档,当初一想到移动社交,就想起微信,虽然也觉得不妥,但是加进去写了。虽然最后也没有太多篇幅关于它,最多就是浪费工作量。但是万一卤煮脑袋一热得出了个结论说“陌生人的有效方法是摇一摇和漂流瓶,因为微信体量很大,所以建议移动社交产品必须加这俩功能”,那岂不是被前辈笑惨了(逗你的 – -)。
那怎样正确选择竞品呢,所谓知己知彼。首先是要知己:
如果是立项阶段,就要清楚目前市场趋势在哪里,用户需求,产品定位等。
如果是大规模迭代改版,可能会倾向旧产品的不足之处以及新兴产品的特点等。
这里介绍刘津前辈的一个选择竞品的高效方法,如下图。该方法相对比较严谨和复杂,实际运用还要看报告的需求来灵活使用。

2、对比和分析
对比和分析是竞品分析的内容主体,一般有两个点需要着重注意:
①分析维度
竞品分析,可能会从以下几个维度进行对比分析:战略定位、盈利模式、用户群体、产品功能、产品界面(交互方式、视觉表现)、数据和技术等,对于不同目的的竞品分析,会有所侧重,这和第一步中确定分析目标相对应。
而着重UE角度分析,可以参考《The Elements of User Experience》的相关理论(将UE分为5个层面),实际写报告时候,将相应内容填充即可。

②分析准则
无论是做哪个维度的对比,都需要基于相同的标准(准则),才能作出合理的分析。不过这对于一般的产品功能来说,没有成文的规范,大概做到“相同的操作系统,同一时期的版本,同一地区的版本等”即可。而做交互分析,可能需要严格按照类似“十项可用性准则”之类的法则来做:1,一致性和标准性;2,通过有效的反馈信息提供显著的系统状态;3,方便快捷的使用;4,预防出错;5,协助用户认识,分析和改正错误;6,识别而不是回忆;7,符合用户的真实世界;8,用户自由控制权;9,美观,精简的设计;10,帮助和说明。
对比分析一般步骤是:
–>寻找产品元素
–>罗列展示(截图、标示、图表法等)
–>列举各自优缺点(尽可能思考出更深层次的逻辑关系,揣摩竞争对手的意图)
参照之前面试官的反馈和各个网路大神的博文归纳可知,这一块重点不在于你罗列多详细,而在于你把每个罗列项分析到位了没有(好像是废话啊,orz)
3、讨论和提出解决思路
有了上一步坚实的分析基础,最后一步就是展示自己解(吹)决(水)问(功)题(力)了。
回头看看自己定下的竞品分析目标是什么,需要为解决什么问题
看看第二步中相应维度的对比分析结论,然后切换到用户身份,脑补一下自己的“需求”是什么
最后啃一篇科技媒体的“趋势分析”,了解近未来的行业趋势
就可以脑洞大开出属于自己的解决方案了
上面虽然言语略带调侃,但实际情况大概就是这样,尤其是新人和学生在行业知识不甚充足的时候,借鉴专业媒体来打开思路不失为一个方法,不过最好也应该更多地基于自己亲身体验的感受,虽然你的是“伪需求”,但毕竟也代表着某一类用户。
补充一条:
想让自己的解决方案看起来更加靠谱,往往需要引用一些具体的数据来定性分析,这时可以结合自己情况做些小调研,了解一下其它用户对该问题的看法,或者去一些数据门户,看看专业调查分析的一些借鉴一下。
再补充一条:
单纯的竞品分析没有什么意义,切勿为了分析而分析,而是应该带着问题去做竞品分析,把竞品分析当作是熟悉业务、解决问题的手段。
以上是关于卤煮之前曾经在写竞品分析时候犯过的一些错误的反省和方法论的总结,还有对部分网络大神精彩文章的引述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22