京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”促油井管理转型提效
胜利油田滨南采油厂采油管理五区创新油井管理模式,充分发挥大数据的决策作用,突出精“护理”、治“未病”、医“小病”,油井指标日趋向好
记者赵士振 通讯员许庆勇
在油公司模式下,如何搭乘信息化“快车”,实现油井管理的转型提效?
胜利油田滨南采油厂以采油管理五区为试点,充分发挥信息化建设的推动作用,创新油井管理模式,让大数据“说话”,用大数据决策,突出精“护理”、治“未病”、医“小病”。今年以来,油井生产时率同比提升2.6个百分点,百米吨液耗电同比下降0.23千瓦时,工况合格率由70.2%升至78.7%。
油井享受“特护”待遇
从八点女工变成区生产指挥中心监控岗人员,陈振林对信息化带来的高效率有着切身体会。
坐在电脑前,轻点鼠标,30分钟就能完成165口油井的“电子”巡检。
这些井都安装了数据采集系统,井口温度、压力、套压、电参数、示功图等数据都定时自动回传到指挥中心。
“以前,人工录取,得至少10名八点忙活一上午”,陈振林说,“自打有采油厂,一直都是跑到井上录资料,信息化改变了传统管井模式”。
“数据在线监测,不仅快捷,而且准确”,指挥中心副主任马翔介绍。原来1天量两次油,平均用时6分钟,短短几分钟的数据,用来推算一口井24小时的液量,特别是间歇出油的井误差较大。现在,功图计产每半小时一次,重点井还可通过远程控制5分钟采集一次。
该区还实现了5座注水站、20座计量站数据的实时采集,104口水井数据的实时采集及远程控制,油井工况数据日采集11.86万条以上,为管理提供了强大数据支持。
数据实时采集,“体检”实时进行,油水井享受上“特级护理”待遇。
早做工作治“未病”
油井“体检”结果更全、更准、更及时,让技术管理室副主任刘艳华感觉管理更加得心应手。
示功图,可直接反映油井的运行工况,被称为油井的“心电图”。刘艳华说,以前,一口油井平均一个月测一次示功图,测起来还很费事,测试员工在井上待一天,也只能测出10余个功图,数据量少不说,质量还不高。现在,每半小时就自动生成一个示功图。
“这就像大夫坐诊,看一张化验单,肯定不如看多张化验单诊断得准”,刘艳华打开一口井的功图监控页面,“这口井,看一两个示功图,显示正常,但对比分析多个示功图,就能看出泵漏趋势”。
以往,因泵漏、管漏等造成的躺井往往具有一定潜伏期,短则几天,长则数月,产量、载荷、压力等参数长时间的细微变化,靠人工录取难以被及时发现,等到产量明显下降时再采取措施,管理实效较差。
如今,在各项参数实时采集、变化曲线随时调取的基础上,为了将零散的海量数据整合起来,他们建立多参数组合预警模型,以泵漏井、管漏井、结蜡井为重点,缜密分析近3年的躺井资料,总结每口井的典型特征,据此进行组合预警设置,并反复推演验证。当参数变化达到设置条件时,系统就会自动报出预警信息。
预警信息显示,SJSH142井有泵漏趋势,及时采取大排量洗井措施,使该井恢复了正常,避免了躺井。
目前,他们对165口井进行了组合预警设置,合计495井次,通过预警及时处置18井次,预警准确率100%,节约作业成本150余万元。
这让刘艳华颇有点成就感,“一定努力做好治‘未病’的油井大夫”。
早诊早治医“小病”
报警显示,BN1-1X9井皮带断,检修指令立即下达至注采站,很快得到了更换,减少了产量损失。
“皮带断后,3分钟内就能发现”,马翔介绍,“通过历史数据分析,该井电机空转时电流范围在9.3A-9.5A之间,据此设置的该井报警模型”。
像这口井一样,经过科学分析,他们对165口井进行了压力、温度、液量、载荷、电参数等限值设置,一项参数异常波动,即可实现报警,生产全程做到了数据实时采集,状态实时监控,动态实时分析,远程电子调控,大幅提高了运行效率。
“这就像在病初起之时用药,防止小病拖成大病,造成大损害”。
日常重调理,油井“身板”好。以往,一个月测一次油井功率平衡。现在,实现每半小时测一次平衡后,他们依托足够数据,精心优选油井,采取对调法、组合分析法,实现了平衡一次调整到位,不用再像以前摸索着多次调整。截止目前,调整抽油机平衡126井次,功率平衡率逐月提高,百米吨液耗电逐月降低。
在以往传统决策模式下,现场遇到问题,情况逐级上报,管理层级多,反馈环节多,决策效率低。现在,管理区将趋势预警、故障报警、视频监控等功能有机结合,现场出现异常,自动传至指挥中心,中心直接将指令下达到一线,处置生产故障平均用时由5小时缩短为30分钟。
SJSH142-6井出现功图最大载荷报警,生产指挥中心科学调度,相关工作同步进行。管控岗人员结合电流曲线初步判断为杆断,通知人员现场落实并反馈至技术管理室,确定为杆断后停井。
实施方案很快出炉,第二天搬上作业检泵,从出现杆断到搬上作业仅用时19.5小时。快速反应,“小病”早治,大大提升了油井管理水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27