京公网安备 11010802034615号
经营许可证编号:京B2-20210330
地理教学中使用WPS表格分析趋势数据 学地理的“三关三步”
在地理课的教学中适当的引入信息化方式,不仅仅可以从本质上帮助学生理解地理信息数据中所蕴含的内容,还有助于培养学生处理复杂数据的能力。
高中地理中的数据很多都是跟趋势有关的,如自然地理中的温度、气压、海拔等系列相关数据和人文地理中人口变化等内容都涉及到两个或者多个相关量的变化情况。WPS表格具有强大的图表功能,不仅能以多种形式从各方面将数据予以展示,还具有一定的分析功能,为具有变化趋势的相关数据添加趋势线并做出评价。
现以上述内容为例,将高中地理课堂中的实例予以展示。
1.气温-海拔变化趋势教学
一般来说,气温随海拔升高而降低,一般来说是海拔每升高1km,气温平均下降6℃左右。向学生提供某海滨城市的气温随海拔变化数据表,并使用WPS表格图表功能研究气温随海拔的变化规律。
在WPS表格中选择数据区域,打开图表向导,选择图表类型。一般来说,趋势数据都选择XY散点图为宜,并选择平滑曲线。原因在于这只是不完整的数据样本,平滑曲线更容易让学生理解采样数据所承载趋势的程度。有了图,引导学生认识此变化趋势便有了依据,不仅可以立刻看出此变化趋势,还可以使用适当的模型来描述。
图1是生成的气温随海拔变化图。
气温与海拔大致呈现线性相关。这幅图的虽然很好的反映出了气温变化趋势,但是缺乏量化的函数无法充分利用此趋势,需要建立具体的公式来描述,这就要使用趋势线的功能。
在已经形成的曲线上单击右键,选择添加趋势线,因为大体已经可以判断是线性,在类型标签中选择线性,并在选项中勾选显示公式和显示R平方值,此时立刻生成一条线性趋势线,还给出了数值化的一次函数。

y=-5.9684x+21.054
利用WPS表格的扩展功能,可以使这个函数和图表传递出更多表格中隐藏的信息(图2):直线斜率为负,表明温度随海拔增高而降低,并且每降低1km,气温下降的幅度约为6℃。若x为零,y=21.054,即当地海平面处气温约为21℃左右。使用趋势预测向前推或者倒推一些单位便得到图3。
R2(方差)的值为0.9984,这说明拟合程度已经相当高了,表明此公式来描述当地温度随海拔高度变化趋势十分合适。
2.人口变化趋势教学
前一个例子的数据变化趋势中蕴含了一些可以推导的地理概念,但是像人口趋势类似的数据本身不具有更多的可推导性,只能作为一种特殊的模型利用数学工具来预测,趋势线同样可以发挥作用。
表2是收集1978年改革开放以来我国的年度人口数据,以此建立适合的数学模型描述它们的变化,并对未来几年的人口做出预测。
同样采用X、Y散点图中的平滑曲线生成图表。通过图表可以看出,人口增长的趋势总体趋于缓和,所以使用线性模型来描述就不合理了,尝试使用多项式来拟合数据。为曲线添加趋势线,在类型中选择多项式首先选择使用2次多项式来拟合,R2值为0.9983,方差已经让人满意了,我们再采用3次多项式来试试看,方差值达到了0.9994,若采用四次多项式方差值可以达到0.9999,几乎可以认为是完全拟合。
最后我们根据得到的模型函数预测2010年的人口总数为13.45亿左右。
对数据进行信息化处理,引导学生利用数据处理软件来挖掘数据背后蕴藏的信息,这样在教学过程中学生面对的就不仅仅是枯燥的数字表格,而是能挖掘其内涵并具有一定探索性的科学学习方式。不仅丰富了地理教学的方式方法,提升了课堂效率,对引导学生数据建模思想的形成也具有积极作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23