京公网安备 11010802034615号
经营许可证编号:京B2-20210330
地理教学中使用WPS表格分析趋势数据 学地理的“三关三步”
在地理课的教学中适当的引入信息化方式,不仅仅可以从本质上帮助学生理解地理信息数据中所蕴含的内容,还有助于培养学生处理复杂数据的能力。
高中地理中的数据很多都是跟趋势有关的,如自然地理中的温度、气压、海拔等系列相关数据和人文地理中人口变化等内容都涉及到两个或者多个相关量的变化情况。WPS表格具有强大的图表功能,不仅能以多种形式从各方面将数据予以展示,还具有一定的分析功能,为具有变化趋势的相关数据添加趋势线并做出评价。
现以上述内容为例,将高中地理课堂中的实例予以展示。
1.气温-海拔变化趋势教学
一般来说,气温随海拔升高而降低,一般来说是海拔每升高1km,气温平均下降6℃左右。向学生提供某海滨城市的气温随海拔变化数据表,并使用WPS表格图表功能研究气温随海拔的变化规律。
在WPS表格中选择数据区域,打开图表向导,选择图表类型。一般来说,趋势数据都选择XY散点图为宜,并选择平滑曲线。原因在于这只是不完整的数据样本,平滑曲线更容易让学生理解采样数据所承载趋势的程度。有了图,引导学生认识此变化趋势便有了依据,不仅可以立刻看出此变化趋势,还可以使用适当的模型来描述。
图1是生成的气温随海拔变化图。
气温与海拔大致呈现线性相关。这幅图的虽然很好的反映出了气温变化趋势,但是缺乏量化的函数无法充分利用此趋势,需要建立具体的公式来描述,这就要使用趋势线的功能。
在已经形成的曲线上单击右键,选择添加趋势线,因为大体已经可以判断是线性,在类型标签中选择线性,并在选项中勾选显示公式和显示R平方值,此时立刻生成一条线性趋势线,还给出了数值化的一次函数。

y=-5.9684x+21.054
利用WPS表格的扩展功能,可以使这个函数和图表传递出更多表格中隐藏的信息(图2):直线斜率为负,表明温度随海拔增高而降低,并且每降低1km,气温下降的幅度约为6℃。若x为零,y=21.054,即当地海平面处气温约为21℃左右。使用趋势预测向前推或者倒推一些单位便得到图3。
R2(方差)的值为0.9984,这说明拟合程度已经相当高了,表明此公式来描述当地温度随海拔高度变化趋势十分合适。
2.人口变化趋势教学
前一个例子的数据变化趋势中蕴含了一些可以推导的地理概念,但是像人口趋势类似的数据本身不具有更多的可推导性,只能作为一种特殊的模型利用数学工具来预测,趋势线同样可以发挥作用。
表2是收集1978年改革开放以来我国的年度人口数据,以此建立适合的数学模型描述它们的变化,并对未来几年的人口做出预测。
同样采用X、Y散点图中的平滑曲线生成图表。通过图表可以看出,人口增长的趋势总体趋于缓和,所以使用线性模型来描述就不合理了,尝试使用多项式来拟合数据。为曲线添加趋势线,在类型中选择多项式首先选择使用2次多项式来拟合,R2值为0.9983,方差已经让人满意了,我们再采用3次多项式来试试看,方差值达到了0.9994,若采用四次多项式方差值可以达到0.9999,几乎可以认为是完全拟合。
最后我们根据得到的模型函数预测2010年的人口总数为13.45亿左右。
对数据进行信息化处理,引导学生利用数据处理软件来挖掘数据背后蕴藏的信息,这样在教学过程中学生面对的就不仅仅是枯燥的数字表格,而是能挖掘其内涵并具有一定探索性的科学学习方式。不仅丰富了地理教学的方式方法,提升了课堂效率,对引导学生数据建模思想的形成也具有积极作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06