京公网安备 11010802034615号
经营许可证编号:京B2-20210330
每人计客流的数据运营之道
数据就像水,水利万物,也能毁万物。怎样才能用好大数据,让数据化运营落地?
第一招:找到数据。
许多企业为了实现经营目标,不惜重金请来数据分析师,志在通过数据运营来开疆拓土。但是并非请来数据分析师就高枕无忧了,很多人只能称之为数据师,因为他们还未达到分析师的水平,空有满腹理论,却无商业意识,不懂得究竟要运用哪些数据去分析,自己都坠入云里雾里。
他们把没有经过整理的繁杂的数据一股脑像倒垃圾一样倒给了CEO,没有解释这些数据背后的含义、体现客户的什么行为、这些曲线有什么意义等等。当CEO拿到这些数量庞大零碎的数据时,他们内心是崩溃的。
CEO需要一目了然地知道这些数据到底反映了啥玩意儿,市场有何动向?而不是花多余的精力自己来查阅资料解读数据。对商业数据要有如同八爪鱼般敏感的触角。例如得知近两年老年人数量占比不断上升的时候,就可以预测到跟老年人相关的产品销量会随之上升。
数据分析师需要深入与业务部门接触,甚至到业务部门轮岗,零距离了解业务部门,开发商业触觉。CEO需要看的是对数据的分析,能准确把握市场的方向。
第二招:沟通数据。
很多行业都希望通过大数据进行改变,电子商务在数据获取方面有天然优势,但是很少能在数据分析环节做到完善,而如今实体商业对数据分析也越来越重视。结果就是,公司积极地收集数据,后来发现数据非常混乱和分散,不知何用,数据之间无法关联,分析不出其中隐含的内容,渐渐的这些数据就死在了报表中。
在数据收集之时就需要保证数据的精准度,并且统一标准和详细分类,这就需要数据分析师和各业务部门进行互联,避免各自为政地整理数据。而数据分析师必须站在业务员的角度来客观分析手中的数据,才能给CEO一个真实的分析结果。
沟通数据是部门之间的沟通,部门和数据之间的沟通,也是数据和数据之间的沟通。在商业场景中,多数时候需要客流量、成交率、连带率、客单价、坪效、体验率等不同维度之间的数据进行互相联系并分析,才能得出结论。例如客流量翻倍增长,成交率下降,排查出员工劳动强度大,接待能力不足。
在这招中,统一不同部门统计数据的标准,保证不同部门之间数据能够顺利交换,不同维度数据之间融会贯通是重中之重。
第三招:数据运营和分享。
第一,将数据放在框架中进行指标化分解,分析出数据背后隐藏的真相,才不会被表面的信息所迷惑。例如甲店来了100个顾客,成交了10人;乙店来了150人,成交了12人,从成交人数来看,乙店做得更好,但是分析成家率的话,甲店成交率是10%,乙店成交率是8%,其实甲店效率更高。
第二,寻找参照物。数据需要进行横向和纵向对比参照,参照物不同,得出结果不同。例如企业在进行促销活动的时候,往往需要和同比上期的促销幅度、客流量、成交率、顾客对活动的评价等方面进行比较。而不是跟平时销售日进行比对,如果选错对象,数据分析就毫无意义。
第三,数据收集之后,当然是用来分析和用来看的。在这个看颜值的时代,不恰当的展现形式,会使得对数据的分析产生理解障碍和误解,例如最原始的EXECL表,能把近视眼看成老花眼。好的数据展现形式有利于决策者读懂数据意义,做出合理决策。
数据分析的最终目的就发现并解决问题,有效的获取、使用、分享、协同、连接、简化数据,让每个人都能够对数据作出分析和合理的判断,这是最理想的状态,当员工都积极投入这样的数据分析工作之中,数据运营就进入了一个良性循环。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15