
CDA数据分析师认证考试(第四届)将于2016年6月25-26日进行。届时考试共有两个等级,分别为:
CDA LEVEL Ⅰ ,CDA LEVEL Ⅱ .
官方考纲下载:
------------------------------------------------------------------------------------------------------------------------------------------
一、行业背景:
这是一个用数据说话的时代,也是一个依靠数据竞争的时代。麦肯锡公司的研究预测称,到2018年,在“具有深入分析能力的人才”方面,美国可能面临着14万到19万的缺口,而“可以利用大数据分析来做出有效决策的经理和分析师” 缺口则会达到150万。数据科学家将成为2016年最热门的职业。
作为一个数学和统计学的强国,数据分析、数据挖掘和大数据价值挖掘在我国仍属于朝阳行业,数据分析人才仍然比较稀缺。数据积累越来越多,期待解决分析的数据问题也越来越多,人们逐渐习惯的使用数据作为决策的重要参考依据。据艾瑞的研究报告,未来与数据分析相关的就业岗位会在1000万左右,而目前来说国内的合格的数据分析师不足5万,建立一个科学有效的数据分析师培训体系迫在眉睫。
在这样一个以数据驱动的时代,在社会缺少专业系统的人才培养与认证机制的时代,CDA数据分析师应运而生于2013-2014年度推出CDA数据分析师LEVELⅠⅡⅢ资格标准,并根据标准制定了规范的人才培养与考试认证机制。
二、考试简介:
CDA(Certified Data Analyst),简称“CDA数据分析师”,指在互联网、零售、金融、电信、医学、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。CDA旨在加强国内外乃至全球范围内正规化、科学化、专业化的数据分析人才建设,进一步提升数据分析师的职业素养与能力水平,促进数据分析行业的高质量持续快速发展。由于国内缺乏数据分析师考核认证标准,以丰厚的积淀,整合资源,汇聚国内外学术界、实务界顶级数据分析师团队举办“CDA数据分析师认证考试“,为企业、政府等单位培养优秀的数据分析人才。CDA数据分析师等级标准来源于长年从事数据分析教育与工作的经验和实践,对数据分析行业的研究,对数据分析教育的不断完善开发,从而总结出来的一套专业化,科学化,规范化,系统化的标准来认证什么样的人才才是合格的CDA数据分析师。
三、考试科目
CDA Level I 包含以下科目:《职业道德与操守》、《数据库与 SQL 基础》、《统计学(初级)》、《业务数据分析》、《数据可视化》
CDA Level II 包含以下科目:《数据采集与数据处理》、《统计分析》、《商业策略分析》、《数据治理》
CDA Level III 包含以下科目:《数据挖掘与高级数据处理》、《自然语言处理与文本分析》、《算法应用与实战》
四、CDA报考条件:
Level Ⅰ:无要求,皆可报考
Level Ⅱ:获得CDA Level Ⅰ认证
Level III:获得CDA Level II 认证
五、报名办法
(1)在CDA官方唯一考试系统进行报名:http://exam.cda.cn/
(2)报名流程:
在线注册登录——提交资料——报考科目——完成缴费——审核通过——报名成功
六、考试形式
Level Ⅰ:客观题(单选+多选),上机答题
Level Ⅱ:客观题(单选+多选),上机答题
Level III : 客观+案例分析(选择+案例操作)
参考书目请见考试大纲及解析。
考试最终成绩分为A,B,C,D不及格四个层次,A,B,C三个层次皆为通过考试并获得认证证书。
七、官方考试最新安排:
CDA LEVEL Ⅰ:2016年6月25日(下午)
CDA LEVEL Ⅱ:2016年6月26日(上午)
中国内地30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州。
考试费用:
CDA LEVEL Ⅰ: 1200元
CDA LEVEL Ⅱ: 1700元
截止时间:2016年6月7日
在线报名地址:http://exam.cda.cn/
八、持证人福利:
1. 可吸纳为中国数据分析师(CDA)俱乐部会员,活动中具有优先报名参与权;
2. 免费参与中国数据分析师行业峰会、大数据峰会、研讨会等活动,并享受特权位置;
3. 可申请加入数据处理与分析中心,参与项目合作(提供项目给持证人演练);
4. 持证人的资源分享平台;
6. 其他特权,以各类活动公告为主。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02