
大数据分析的未来是怎样的
本节探讨未来的大数据分析的技术前景。
要探讨的一件有趣的事情是在Apache Tez 之上实现机器学习算法。这里要解决的问题在于是否存在帮助实现迭代式机器学习的有向无环图执行器。主要的挑战是停止/结束条件不能是静态的,而只能在运行时。这一点已在最近由Eurosys 提出的Optimus 系统(Ke 等,2013)中探讨过,该系统提供了一个在DryadLINQ 上实现机器学习算法的途径。
另一件需要引起注意的有趣工作是来自斯坦福大学的Forge 系统(Sujeeth 等,2013)。Forge 提供了一种领域特定元语言(DSL),该语言允许用户为不同领域指定DSL。DSL 概念(Chafi 等,2011)的引入可作为分布式系统的替代手段——这是从程序员以及高效实现的领悟中抽象出来的。Forge 也有为机器学习提供的特定DSL,称作OptiML。Forge 既有单纯的Scala 实现(用于原型机)也有高效并行的分布式实现,后者可以部署在集群环境(用于生产环境)。Forge 使用Delite 框架(Brown 等,2011)实现了后者的一部分。性能测试显示,由Forge 在集群节点上自动生成的分布式实现相当于用Spark 实现的等价功能的40 倍性能,它也表达了Spark 仍然有优化的可能性——这一点值得做更进一步的探讨。
大数据方面的深度学习仍然是这一领域的圣杯。近期来自谷歌的论文显示已取得一定进展(Dean 等,2012)。这篇论文展示了两种训练算法,多点同时随机梯度下降算法和集群多节点L-BGFS,用于训练深度神经网络。核心思想是共享参数服务器用于多模型副本并行训练。尽管参数服务器在训练时是共享的,分片本身也会成为单点故障。一个可能的改进是在它们之间覆盖网络,作为通信的对等集合查看参数服务器,就像OpenDHT 或Pastry。这样参数服务器就实现了容错,甚至提升了性能。
使用前面章节介绍过的七大任务的目的是需要描述为机器学习这类计算并识别在大数据世界里当前实现的差距。就任务6、7 的实现而言,它们之间在集成方面就有差距(在处理数据方面的整合工作上),可能要求马尔科夫链的蒙特卡罗(MCMC)实现,正如在第1 章解释过的。MCMC 在Hadoop上是出名的难以实现。Spark 可能是最理想的。类似的,任务7(比对问题)可能要求隐马尔科夫模型(HMM)实现,这一点就是另一个领域的讨论了——实现了隐马尔科夫模型的大数据。应用包括图像的重复数据删除(比如,在Aadhaar 工程中——印度的身份项目,要求从存储的数以亿计的图像中找出重复的照片)。
D-wave 量子计算机已被安装在量子人工智能(AI)实验室(由NASA、谷歌,以及大学空间研究协会联合运行)。这一举措的根本目的是用量子方法探讨难以解决的问题(任务5)。谷歌还聘请了一些人工智能研究人员,比如Ray Kurzweil。这一系列的举措的圣杯是量子机器学习,可能会有人使用这一术语。而它已被麻省理工学院的Seth Lyod 在量子计算国际会议中提出。他的工作是使用量子比特检索(Qbit,量子比特)。在大数据集环境下它可以快速给出结果,同时又抛出了另外的有趣问题:隐私。量子比特不能在传输过程中窥探——窥探会影响量子比特状态。当然这是一个值得深入探索的领域。
分析领域的另一项有趣进展是基于磁盘的单节点分析——与云/分布式的趋势背道而驰。由GraphLab 的创建者发表的GraphChi 的论文(Kyrola 等,2012)提出了例证。GraphChi提供了一种处理磁盘上的大型图的机制。对于Twitter-2010 图型的三角形计数,它们表现为单节点低于90 分钟的性能,而相同功能的Hadoop 实现却要在一个分布式环境下的1400 个工作进程花费400 分钟。GraphChi 采用一系列外存算法和并行滑动窗口的方式异步处理磁盘上的大型图。2013 年10 月,在纽约的一次Strata 会议中,Sisense,一家小的初创公司,展示了他单节点10 秒钟内处理10TB 数据的能力,而全部花费不到10,000 美元。探索GraphChi 在分布式环境中的应用会很有趣——它可能会提供快速处理巨型图的能力。
另一个有趣的趋势是大数据、移动设备和云端在物联网(IoT)的支持下的整合。对于大数据架构/研究,这里蕴藏着巨大的机遇,因为通过物联网有更多来自用户的有效数据,同时还提供了数据分析的温床。通过云端的大量大数据平台,云端已与大数据做了很大程度上的整合。IoT 与大数据云的整合可能是一个可预见的趋势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18