京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师主宰者
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
不管你喜不喜欢,你在网络上所做的事情都会留下越来越深的足迹。那些公司拥有关于你和其他数百万潜在顾客的海量数据。他们现在所需的就是一只分析师队伍,让这些数据变便得有意义。
当然,谷歌已经是这方面活生生的例子了。
其领导人已经建立了一个利润达236亿美元的企业——完全是建立在追踪、理解和管理数据的基础上,更精确的说是理解人们如何进行搜索,然后在搜索结果旁附上相应的广告。然而数据的威力还仅仅限于因特网企业。想想看,因为你在生活中留下了越来越深的数字足迹,现在的每一行业都能获得不可思议让人头疼的大量的客户与潜在客户数据。
利用Web,商家能够而且肯定会密切注意你的每次点击,或者至少其中的大部分。而且,越来越多的人正在利用手机订机票、买书或者缴停车费等各种事情,数据挖掘的可能性变得更加丰富了。
数据分析师也是这样。
大大小小的公司预计会雇佣大量的数据分析师。根据劳工统计局所述,这一职业总体上在2018年之前将以45%的速度递增,成为增长速度最快的职业。劳工统计局将这一职业分为几类比如软件与应用程序工程师和计算机系统分析师等,这些都有巨大的机会。数据处理革命正在席卷商业的每一个角落。毕竟,更多的数据能够帮助更好的管理公司运行和供应链。“目前的挑战是利用这些数据更好的理解商业的方方面面”,Varian说。
机会来自大大小小的公司,甚至那些目前还不存在的公司。
让我们来来看看Jeff Tseng,他在2007年中跟合伙人Albert Lai在旧金山创立了Kontagent公司。Kontagent公司完全依赖Facebook和其私人投资者的资助而存活。Tseng和其队伍创造了一系列分析人们在Facebook上行为方式的工具,尤其是注意如何与第三方应用,比如游戏,互动。这些是非常有用的信息,Kontagent已经有了100位顾客订购他们的分析工具,用于分析,例如,那些游戏邀请能够带来注册、为什么会这样等信息。
Tseng和他的队伍进行的是一项很有难度的数据挖掘任务。
考虑下这些数据:Facebook有4亿活跃用户,平均每天在线55分钟 。这对Kontagent意味着什么?“我们每个月收集几十亿条用户数据,“Tseng说,他今年31岁,为了创业从UCLA的电子工程系博士学位退学。”在今后几年,更会增加到数百亿条。”
收集到数据是一件事,利用好它是另外一件事。
这是数字时代每一行业的所面临的挑战。所以除了超人的数学技能,和Tseng一样的人们还需要理解经济和某一特定市场的的精髓。换句话说,这和单纯的数学据计算差的很远。
Kongtangent现在只有九名雇员,但是不要小觑这类小公司未来的工作机会。并不是Kontangent所做的事吸引了Varian和其他经济学家的注意力,而是它将何去何从。
对Varian来说,Kontangent代表一个巨大且重要的劳动力方面的趋势:他所说的“micro-nationalcompanies”的崛起。这是指,由技术的进步,小公司可以便宜的使用不久以前还专属于跨国巨头的计算能力。比如,Kontangent将其所有数据存储在“云”上,从而省去了昂贵的数据中心。它租赁“云”上的数据间并通过web访问,很多新开张的公司都这样做。
向云的迁移还正在从另一方面帮助就业市场。
以EMC为例,这是一家数据存储和数据安全的公司。它正在推动无线和云计算方面的数据保护工作。结果,该公司计划今年大量招聘,将其研发费用提高20%。它在第一季度已经雇佣了800名新员工,并计划在年底前再增加2000人。
Varian认为向云的迁移的重要性不仅仅在于它创造了新的就业机会,还在于他正在改变我们的工作方式。比如,它使得频繁的更改一项大工程更容易还让全球合作成为可能。他说,这最终会成就一个更有效率的社会。按此推断,这会让我们有更多的空闲时间去购物、旅游、做自己的事,然后制造更多的数据。
总结:越来越多的企业将选择数据分析师的专业人士为他们做出科学、合理的分析,以便正确决策项目.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29