
数据分析师主宰者
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
不管你喜不喜欢,你在网络上所做的事情都会留下越来越深的足迹。那些公司拥有关于你和其他数百万潜在顾客的海量数据。他们现在所需的就是一只分析师队伍,让这些数据变便得有意义。
当然,谷歌已经是这方面活生生的例子了。
其领导人已经建立了一个利润达236亿美元的企业——完全是建立在追踪、理解和管理数据的基础上,更精确的说是理解人们如何进行搜索,然后在搜索结果旁附上相应的广告。然而数据的威力还仅仅限于因特网企业。想想看,因为你在生活中留下了越来越深的数字足迹,现在的每一行业都能获得不可思议让人头疼的大量的客户与潜在客户数据。
利用Web,商家能够而且肯定会密切注意你的每次点击,或者至少其中的大部分。而且,越来越多的人正在利用手机订机票、买书或者缴停车费等各种事情,数据挖掘的可能性变得更加丰富了。
数据分析师也是这样。
大大小小的公司预计会雇佣大量的数据分析师。根据劳工统计局所述,这一职业总体上在2018年之前将以45%的速度递增,成为增长速度最快的职业。劳工统计局将这一职业分为几类比如软件与应用程序工程师和计算机系统分析师等,这些都有巨大的机会。数据处理革命正在席卷商业的每一个角落。毕竟,更多的数据能够帮助更好的管理公司运行和供应链。“目前的挑战是利用这些数据更好的理解商业的方方面面”,Varian说。
机会来自大大小小的公司,甚至那些目前还不存在的公司。
让我们来来看看Jeff Tseng,他在2007年中跟合伙人Albert Lai在旧金山创立了Kontagent公司。Kontagent公司完全依赖Facebook和其私人投资者的资助而存活。Tseng和其队伍创造了一系列分析人们在Facebook上行为方式的工具,尤其是注意如何与第三方应用,比如游戏,互动。这些是非常有用的信息,Kontagent已经有了100位顾客订购他们的分析工具,用于分析,例如,那些游戏邀请能够带来注册、为什么会这样等信息。
Tseng和他的队伍进行的是一项很有难度的数据挖掘任务。
考虑下这些数据:Facebook有4亿活跃用户,平均每天在线55分钟 。这对Kontagent意味着什么?“我们每个月收集几十亿条用户数据,“Tseng说,他今年31岁,为了创业从UCLA的电子工程系博士学位退学。”在今后几年,更会增加到数百亿条。”
收集到数据是一件事,利用好它是另外一件事。
这是数字时代每一行业的所面临的挑战。所以除了超人的数学技能,和Tseng一样的人们还需要理解经济和某一特定市场的的精髓。换句话说,这和单纯的数学据计算差的很远。
Kongtangent现在只有九名雇员,但是不要小觑这类小公司未来的工作机会。并不是Kontangent所做的事吸引了Varian和其他经济学家的注意力,而是它将何去何从。
对Varian来说,Kontangent代表一个巨大且重要的劳动力方面的趋势:他所说的“micro-nationalcompanies”的崛起。这是指,由技术的进步,小公司可以便宜的使用不久以前还专属于跨国巨头的计算能力。比如,Kontangent将其所有数据存储在“云”上,从而省去了昂贵的数据中心。它租赁“云”上的数据间并通过web访问,很多新开张的公司都这样做。
向云的迁移还正在从另一方面帮助就业市场。
以EMC为例,这是一家数据存储和数据安全的公司。它正在推动无线和云计算方面的数据保护工作。结果,该公司计划今年大量招聘,将其研发费用提高20%。它在第一季度已经雇佣了800名新员工,并计划在年底前再增加2000人。
Varian认为向云的迁移的重要性不仅仅在于它创造了新的就业机会,还在于他正在改变我们的工作方式。比如,它使得频繁的更改一项大工程更容易还让全球合作成为可能。他说,这最终会成就一个更有效率的社会。按此推断,这会让我们有更多的空闲时间去购物、旅游、做自己的事,然后制造更多的数据。
总结:越来越多的企业将选择数据分析师的专业人士为他们做出科学、合理的分析,以便正确决策项目.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01