京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用户心愿所归 运营商大数据这盘棋怎么下
电信行业作为IT行业当中一股非常重要的中坚力量,一直以来都在全球范围内受到了广泛关注,根据全球市场机构的权威调查显示,当前全球的120多家运营商当中,有将近一半的运营商正在实施大数据业务,而这些大数据业务将会消耗掉运营商约10%的IT总体预算,专家还预测这个比例在未来的五年内有可能升至23%左右。
我们都知道,电信运营商的业务层面在数据积累等方面具有较强的能力和数据资源,尤其是像业务发展量等这些结构化数据来说,当中有可能涉及到图片、文本、音频、视频等诸多数据内容,所以专家表示,从当前的整体趋势来看,电信运营商在大数据业务层面仍然还处于探索阶段当中。
对于当前国内的电信运营商来说,在大数据的运用当面主要有五方面:网络管理和优化、市场及精准营销、客户关系管理、企业运营管理和数据商业化指数。如利用大数据实现基站和热点的选址以及资源的分配。运营商可以通过分析话单和信令中用户的流量在时间周期和位置特征方面的分布,对2G、3G的高流量区域设计4G基站和WLAN热点;同时,运营商还可以对建立评估模型对已有基站的效率和成本进行评估。
运营商的网络管理
在网络运营层面,运营商通过利用大数据技术来分析网络的流量情况,从而对网络情况的变化趋势做出预测和判断,而后及时调整资源配置,优化网络设置和优化,利用大数据技术实时采集处理网络信令数据,监控网络状况,识别价值小区和业务热点小区,更精准的指导网络优化,实现网络、应用和用户的智能指配。
运营商可以将小区的数据进行多维度数据综合分析,通过对小区VIP用户分布,收入分布,及相关的分布模型得到不同小区的价值,再和网络质量分析结合起来,两者叠加一起,就有可能发现某个小区价值高,但是网络覆盖需要进一步提升,进而先设定网络优化的优先级,提高投资效率。
市场精准营销
通过基于客户终端信息、位置信息、通话行为等诸多数据来为每个用户进行行为消费、上网行为等方面的服务,从而能够更好的了解用户需求,运营商可以通过分析客户通讯录、通话行为、网络社交行以及客户资料等数据,开展交往圈分析。尤其是利用各种联系记录形成社交网络来丰富对用户的洞察,并进一步利用图挖掘的方法来发现各种圈子,发现圈子中的关键人员,以及识别家庭和政企客户。
运营商在客户画像的基础上对客户特征的深入理解,建立客户与业务、资费套餐、终端类型、在用网络的精准匹配,并在在推送渠道、推送时机、推送方式上满足客户的需求,实现精准营销。
运营商客户管理
客户生命周期管理包括新客户获取、客户成长、客户成熟、客户衰退和客户离开等五个阶段的管理。在客户获取阶段,我们可以通过算法挖掘和发现高潜客户,在客户成长阶段,通过关联规则等算法进行交叉销售,提升客户人均消费额;在客户成熟期,可以通过大数据方法进行客户分群(RFM、聚类等)并进行精准推荐,同时对不同客户实时忠诚计划;在客户衰退期,需要进行流失预警,提前发现高流失风险客户,并作相应的客户关怀;在客户离开阶段,我们可以通过大数据挖掘高潜回流客户。
业务运营监控分可以基于大数据分析从网络、业务、用户和业务量、业务质量、终端等多个维度为运营商监控管道和客户运营情况。构建灵活可定制的指标模块,构建QoE/KQI/KPI等指标体系,以及异动智能监控体系,从宏观到微观全方位快速准确地掌控运营及异动原因。
编辑的话
大数据在电信行业的不断深度应用使得用户在享受运营商服务的时候在使用体验上有了质的飞跃,由于电信运营商所面对的用户群体非常庞大,因此在数据的采集、分析、管理、计算等一系列环节当中所面临着巨大的压力,因此对于运营商来说,如何在大数据时代利用大数据技术、云计算技术来更好的服务于用户,更好的提升电信企业自身的业务模式、管理模式能力,是未来运营商将会重点关注的问题所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15