
健康云上如何进行大数据的挖掘与分析(二)
让我们先回顾一下大数据分析的发展史。我们知道,大数据分析技术最初起源于互联网行业。网页存档、用户点击、商品信息、用户关系等数据形成了持续增长的海量数据集。这些大数据中蕴藏着大量可以用于增强用户体验、提高服务质量和开发新型应用的知识,而如何高效和准确的发现这些知识就基本决定了各大互联网公司在激烈竞争环境中的位置。首先,以Google为首的技术型互联网公司提出了MapReduce的技术框架,利用廉价的PC服务器集群,大规模并发处理批量事务。
利用文件系统存放非结构化数据,加上完善的备份和容灾策略,这套经济实惠的大数据解决方案与之前昂贵的企业小型机集群+商业数据库方案相比,不仅没有丢失性能,而且还赢在了可扩展性上。之前,我们在设计一个数据中心解决方案的前期,就要考虑到方案实施后的可扩展性。通常的方法是预估今后一段时期内的业务量和数据量,加入多余的计算单元(CPU)和存储,以备不时只需。
这样的方式直接导致了前期一次性投资的巨大,并且即使这样也依然无法保证计算需求和存储超出设计量时的系统性能。而一旦需要扩容,问题就会接踵而来。首先是商业并行数据库通常需要各节点物理同构,也就是具有近似的计算和存储能力。而随着硬件的更新,我们通常加入的新硬件都会强于已有的硬件。这样,旧硬件就成为了系统的瓶颈。为了保证系统性能,我们不得不把旧硬件逐步替换掉,经济成本损失巨大。其次,即使是当前最强的商业并行数据库,其所能管理的数据节点也只是在几十或上百这个数量级,这主要是由于架构上的设计问题,所以其可扩展性必然有限。
而MapReduce+GFS框架,不受上述问题的困扰。需要扩容了,只需增加个机柜,加入适当的计算单元和存储,集群系统会自动分配和调度这些资源,丝毫不影响现有系统的运行。如今,我们用得更多的是Google MapReduce的开源实现,即Hadoop。除了计算模型的发展,与此同时,人们也在关注着数据存储模型。传统的关系型数据库由于其规范的设计、友好的查询语言、高效的数据处理在线事务的能力,长时间地占据了市场的主导地位。
然而,其严格的设计定式、为保证强一致性而放弃性能、可扩展性差等问题在大数据分析中被逐渐暴露。随之而来,NoSQL数据存储模型开始风行。NoSQL,也有人理解为Not Only SQL,并不是一种特定的数据存储模型,它是一类非关系型数据库的统称。其特点是:没有固定的数据表模式、可以分布式和水平扩展。NoSQL并不是单纯的反对关系型数据库,而是针对其缺点的一种补充和扩展。典型的NoSQL数据存储模型有文档存储、键-值存储、图存储、对象数据库、列存储等。而比较流行的,不得不提到Google提出的Bigtable。
Bigtable是一种用于管理海量结构化数据的分布式存储系统,其数据通常可以跨成千个节点进行分布式存储,总数据量可达PB级(10的15次方字节,106GB)。HBase是其开源实现。如今,在开源社区,围绕Google MapReduce框架,成长出了一批优秀的开源项目。这些项目在技术和实现上相互支持和依托,逐渐形成了一个特有的生态系统。这里我们借用Cloudera所描绘的架构图来展现Hadoop生态系统。这个系统为我们实现优质廉价的大数据分析提供了坚实的技术基础。
综上所述,面对大数据分析的挑战,不管是计算模型还是存储模型技术都有了超前的进步。然而,仅凭借当前的技术,我们准备好面对健康云上的大数据分析的挑战了吗?下一节,我们将重点分析医疗数据的特有性质为大数据分析带来的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22