京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何转化为产品
大数据已经如同工业社会的“石油”一样,成为举足轻重的一种资源。庞大数据如何转化为切切实实的产品,发挥其经济效益,创造更大的社会价值,仍然是一个亟待解决的问题。
如今,大数据已经如同工业社会的“石油”一样,成为举足轻重的一种资源。
2014年,国际数据公司(idc)发布的第七份“数字宇宙”研究报告指出,全球数据总量将以每两年翻一番的速度持续增长。2013年到2020年,数据量将增长10倍,从4.42zb增长到44zb。
如此庞大的数据,看上去十分耀眼。但与此同时,庞大数据如何转化为切切实实的产品,发挥其经济效益,创造更大的社会价值,仍然是一个亟待解决的问题。
日前,由国际科技数据委员会(codata)中国全国委员会主办、在兰州召开的2015科学数据大会上,与会专家、企业代表就此问题进行了深入探讨。
经济价值亟待挖掘
目前,中国是全世界第二大数据生产国,仅次于美国。预计在不久的将来,中国将超过美国,成为世界头号数据生产国。但来自各行各业的数据却长期找不到合适的“变现”方式,一直沉睡。
中科院寒旱所所长马巍就坦言,该所科研人员长期在西北地区的寒区旱区进行深入科考和研究,积累了二三十年的科学数据,但很多时候,他们拥有的数据却无法发挥更大价值。或者说,过去大数据的价值在科学研究方面体现得比较多,但是其经济价值长期没有体现。
“大数据只有进行分析处理,深度挖掘后才有价值,否则就不能发挥作用。”中科院院士、模式识别与计算机视觉专家谭铁牛也这样认为。
对于拥有众多数据的企事业单位而言,大量数据也一直在沉淀,却无法开发。
甘肃移动网络部总经理助理亢凯认为,目前,绝大数多的行业、企业都不具备大数据处理能力,因为大数据还有一定的“高门槛”,所以这也导致大数据的价值没有得到充分发挥,导致“数据+”迟迟无法落地。此外,单独一个企业或者一个行业的数据累积起来,并不能产生足够的价值,必须要将不同领域的数据汇集起来,进行融合,才会有足够的价值。
交换产生价值的“践行者”
在众多专家觉得大数据要想成为产品非常困难时,在本次科学数据大会上,也有企业作出了卓有意义的探索。
肖永红,数据堂公司的联合创始人,据他介绍,数据堂已于2014年12月在新三板上市,是国内首家专注于互联网综合数据交易和服务的公司,其他创始人也多有中科院背景。
在肖永红看来,大数据完全可以转化为产品,只要建立在开放共享的基础上。“目前,数据正在成为各行业的关键支撑,是一种刚性需求。未来数据产品有着千亿元乃至万亿元的市场空间。”
如何把数据变成产品?肖永红提供了这样一种思路。任何来自医疗、健康、销量、物流、景点、交通、监控、气候、教育、住房等领域的数据源产生的数据,可以汇集到类似数据银行这样的第三方平台,其他需要大数据的企业就可以来数据银行付费,进行相关数据交易。
“我们的数据来源之一是众包平台,雇佣兼职人员采集数据。比如,我们在网站上发布一个任务,要求网友收集超市的购物小票,上传图片后我们会给网友提供物质奖励,这样我们就获得了很多独家的核心数据。这些来自超市购物的数据,对于零售企业是非常有用的,我们就可以把这些数据销售给他们。”肖永红说。
当然,科研机构、行业协会、政府部门以及网络数据,都是第三方平台可以获得的大数据来源。“得到数据后,我们要进行数据清洗,去掉无用的信息,再进行数据关联等工作,最后为企业提供定制、销售、订阅、应用等多项服务。”肖永红这样表示。
目前,贵州省正在推行的贵阳大数据交易所也在做类似工作,旨在率先推动数据互联共享方面的探索,将会带动大数据清洗、挖掘和应用等相关产业发展。“拥有数据的用户,完全可以把数据提供给我们这个平台,再由有需要的企业进行采购,这样就能形成产品。”贵阳大数据交易所相关人员表示。
继续政策引导和制度设计
无论如何,让大数据走向市场,真正形成产品,是大势所趋。尽管目前类似数据堂、贵阳大数据交易所这些第三方平台正在涌现,但专家认为,仍然有很多问题需要解决。
“举个最简单的例子,我有大量数据,也愿意交给第三方平台进行交易,但我是不是应该得到一定报酬?这个费用如何计算?这个问题需要解决。”一位不愿透露姓名的专家这样表示。
对此,肖永红及贵阳大数据交易所相关人员均认为,大数据的价值最终应该交由市场来决定,要看有数据需求的企业愿意出多少费用,具体需要双方协商。
“作为有数据需求的企业,他们肯定是愿意付费购买数据产品的。这一点毋庸置疑。”亢凯表示,大数据的发展就是投资驱动的过程,相关利益分配机制也需要探索建立。
中科院寒旱所寒区旱区科学数据中心副主任张耀南则表示,大数据产品的价值,应当由相关的产业联盟来承接数据转化成产品的过程,需要“政府的推手”。
此外,数据的开放与共享问题,也是大数据变成产品过程中不可忽视的一环。肖永红表示,大数据的产品化,只有进一步加大开放与共享才能加速,“我的意见是,开放、共享是大数据变成产品的最大动力,先开放数据,其他问题可以慢慢解决”。
专家们还认为,在加速大数据变成产品的过程中,急需政府提供政策引导和相关制度(比如利益分配机制)的设计,制定相关的大数据标准。
“大数据时代才刚刚开始,政府必须抱着真正开放的心态,对大数据产业、产品的管理和引导要由宽到紧,先推动其发展起来。”亢凯最后表示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15