京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的院校模式创新
时代不断的变迁,高等教育都会在其中留下自己的发展轨迹。身处信息化社会的当下,高等学校自身在教育教学、科学研究、人才培养等方面产生了越来越多的数据信息,其总量正以成倍的速度发展。随着时间的推移,数据信息总量的变化最终会导致数据信息形态的变化——量变引发质变,跨入大数据时代。与此相应,“数据驱动决策”成为大数据背景下提高院校决策绩效的一个新视角。
所谓大数据,是指以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见。
大数据的核心就在于对隐藏在数据中的趋势进行有效预测。这种预测将能影响和改变我们决策的传统模式。大数据的精髓在于为我们分析信息时提供了三个重要转变,这些转变将改变我们理解和组建社会的方法。
首先,在大数据时代,随着软件和硬件的不断升级,我们有了分析更多数据的可能手段和条件,甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机抽样,即“样本等于总体”。其次,在大数据时代,我们不再热衷于追求精确度。拥有了大数据,我们不再需要对一个现象刨根究底,只要掌握大体的发展方向即可。尤其对于决策而言,宏观层面的意义远大于微观层面,适当忽略微观层面上的精确度会让我们在宏观层面拥有更好的洞察力。第三,决策的目的是寻求答案,而不是寻找原因。即我们不再热衷于寻找因果关系,转而关注事物之间的相关关系,这会给我们提供非常新颖且有价值的观点。大数据时代是建立在量化一切的基础上的,大数据告诉我们“是什么”而不是“为什么”。
由于院校决策所涉及内涵的广泛性和决策者组成的复杂性,其决策模式的多元化不言而喻。有研究者将传统的院校决策模式总结为四种:依靠决策者所具有的理性认知能力制定决策的“官僚主义”模式;通过“合意”的过程来平衡大学内多方群体利益的“学院型”模式;通过“扩散”程序表达不同权力集团、利益群体诉求的“政治型”模式;决策程序无章可循、随意性大的“有组织的无政府型”模式。这些模式的共同弱点在于缺少有力的决策支持依据,管理者实际上仅仅是以“有限理性”为基础,努力作出“足够好”的决策而已。
大数据背景下的院校决策可以为大学决策者提供和完善他们认知经验所缺乏的信息、知识和智慧,有学者将其称为以数据系统为支撑的“知会理性”决策模式。通过这一模式完成院校决策的过程如下:首先是确定决策目标。在通常情况下,大学董事会、各种委员会、校级领导、职能部门等需要制定政策或者寻求解决重大问题的方案时,会提出一系列与决策有关的问题。第二步是收集相关的数据。在了解了信息需求之后,开始收集相关信息的数据。同时还有大量外部与学校相关的数据信息,建立大数据库,这些数据与内部数据结合,为数据挖掘提供了庞大的资源。第三步是建立数据模型,进行数据分析。在这个过程中,非常重要的是如何建立有效的数据模型,将数据的整合和分析过程以及分析结果与决策问题和大学的背景联系起来。第四步是展示信息。信息分析完成后,大数据信息报告包含需要向决策者汇报信息、解释结果,并且在全校公开,其目的是进一步检验数据的来源与可靠性。第五步是决策。在大数据信息分析得出的结论之后,决策者将作出科学决策。
事实上,在大数据时代背景下,实现上述决策过程所需要的“硬件”(计算机及网络技术、智能系统建设)已经不是难题,最关键的障碍在于院校决策理念的转变及院校研究开展的程度:院校决策的民主程度;大学领导能否将这项工作纳入优先发展项目之列;院校研究是否真正介入院校决策过程;职能部门数据是否全面及为决策分享数据的态度;决策模型的有效性等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22