京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着社会的发展,“娱乐小报改叫自媒体了,算卦的改叫分析师了,统计改叫大数据了,大忽悠改叫互联网思维了。”这不仅仅是调侃,而是表明在一个时兴“穿上马甲”的年代我们应当时刻保持理性和清醒。对于“大数据时代的收视率调查”,至少有这样三个问题是“大数据”无法解释的:一、非文化的方式能否完成对文化产品的评价?二、大数据能否考量中国特色的收视率造假?三、大数据能否提升电视节目的质量特别是节目的文化含量?
我的思考也不成熟,只是想提醒大家:就像我们食品安全一样,之所以不安全不是数据出了问题,而是世道人心礼崩乐坏。我提供非数据的引经据典。
在实证主义的指导下,收视率是否能承担起对包括电视节目在内的文化文本主观评价的全部任务,无疑难以作出确评,这是由于实证主义研究传统对社会事实的基本态度所致,正如法国社会学家迪尔凯姆就观察社会事实的准则曾经谈到的:“第一条也是最基本的规则是:要把社会事实作为物来考察。”
尽管,冒着对受众隐私的极大侵犯,技术的介入在收视率数据的收集中,并没有使研究者摆脱实证主义也难以避免对社会事实的择取,相反,收视率调查数据越是精确,越使收视率导向的对象――电视受众的面目模糊不清:“一言以蔽之,流水线化了的受众是一种难以把握的乌托邦式的符号客体,但是,受众评估总是要努力接近这一客体。这是受众评估的硬伤所在,其难以实现的前提是对评估技术不断改进的追求。而这种追求基于如下信仰:该技术将提供越来越多的关于受众的信息,也将对受众施加越来越多的控制。但是,这只能加剧整个产业的问题。正如赫维茨所言,受众评估技术日益精细化‘只能增加广播机构的吸引力,推介研究成果就好像解决了问题’。换句话说,收视率服务越是通过其评估手段的改进而提供更多的信息,将实际受众整合进‘电视受众’这一虚幻客体所带来的问题也就越多,结果是,整合受众的流程变得越来越复杂。”
同时,力图实现“价值无涉”的收视率导向在何种程度上隐瞒了自身的意义框架,也可以从实证主义那里找到其理论上的根源,拒绝意义的收视率导向本身恰恰拒绝了对作为文化产品的电视节目的分析这一最根本的任务,就像美国文化人类学家格尔茨所告诉我们的:“对文化的分析不是一种需求规律的实验科学,而是一种探求意义的解释科学。”
这样,对电视节目评估的行为本身就陷入了一种窘境:用非文化的方式来完成对文化本身的评价,用普遍化的诉求来完成对个别文化产品的透析,如此,则“如果把文化事件看作自然,亦即把它纳入普遍概念或规律之下,那么文化事件就会变成一个对什么都适用的类的事例(Gattungsexemplar),它可以被同一个类的其他事例所代替。因此,我们不能满足于仅仅用自然科学的或普遍化的方法去处理文化事件。虽然,这样的处理是可能的,甚至也许是必需的,因为任何一种现实都是可以用普遍化的方法去理解的,但是,在这种情况下,这种处理的结果将是这样:再一次用歌德的话来说,它把那种‘只有分离开来才具有生命’的东西‘生搬硬套地凑成一种僵死的普遍性’。因此,用自然科学概念来表现文化生活,这种做法虽然可能有其正当理由,但仅仅用这种方法是不够的。”
当然,“秀才遇到兵,有理说不清”,人们更感兴趣的是这样的新闻――电影界大数据狂热中,因为大数据的神奇在于“算出拍什么,算出怎么拍,算出谁来看”。《小时代》出品方提到了互联网上的直观数据:该片上映前,预告片的网上点击率达到近五千万次,“票房一定低不了”,最终票房近5亿元。而《爸爸去哪儿》的电影拍摄仅仅四天半,却凭借“粉丝效应”拿下了7亿元的票房。
大数据最终是要大数钱,明白了吗?严肃的学者还要在文章中注明“文中着重号为原文”,一定会有人说:算了吧,啥时候啦?都大数据了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08