京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当“大数据”铺天盖地般向我们涌来,人们往往期冀能够对大数据能够有更进一步的了解,“数据挖掘”因此成为我们理解大数据概念绕不过去的“坎”。通过将大数据与数据挖掘进行对比分析,将有助于人们了解大数据的来龙去脉和未来真实走向。
1.基本概念
数据挖掘,顾名思义就是从大量的数据中挖掘出有用的信息,即从大量的、不完全的、有噪声的、随机的、模糊的数据中,提取隐含其中的、规律性的、人们事先未知的、但又是潜在的有用信息和知识的过程。数据挖掘是一个在海量数据中利用各种分析工具发现模型与数据间关系的过程,它可以帮助决策者寻找数据间潜在的某种关联,发现被隐藏的、被忽略的因素,因而被认为是在这个数据爆炸时代解决信息贫乏问题的一种有效方法。数据挖掘作为一门交叉学科,融合了数据库、人工智能、统计学、机器学习等多领域的理论与技术。数据库、人工智能与数理统计为数据挖掘的研究提供了三大技术支持。
大数据是通过高速捕捉、发现和分析,从大容量数据中获取价值的一种新的技术架构。著名研究机构IDC给大数据的定义,有四个"V"字开头的特征:Volume(体量大),Velocity(速度快),Variety(种类杂),Value(价值大)。Volume是指大数据巨大的数据量与数据完整性�Velocity可以理解为更快地满足实时性需求;Variety则意味着要在海量、种类繁多的数据间发现其内在关联;Value最重要,它是大数据的最终意义:挖掘数据存在的价值。
2.相互联系
大数据是数据挖掘的概念再升级。相比于兴起只有2~3年的大数据概念,已有20多年发展的数据挖掘可称得上大数据的开山鼻祖。因为大数据和数据挖掘的本质是相同的――对数据进行挖掘分析,以发现有价值的信息。而且大数据的兴起,正是在人工智能、机器学习和数据挖掘等技术基础之上发展起来的,而人工智能、机器学习又是在为数据挖掘服务。从表面上看,大数据与数据挖掘的显著区别在于“大”上。然而深入分析就会发现:一方面,数据挖掘的对象不仅可以用于少量的数据,而且同样适用于海量数据,只是由于挖掘方法和技术工具的不断升级换代,换了个新的名称而已;另一方面,大数据的本质不在于“大”,而是以崭新的思维和技术去分析海量数据,揭示其中隐藏的人类行为等模式,由此创造新产品和服务,或是预测未来趋势。所以大数据和数据挖掘的概念在一定时期还会并存,因应于使用的时机、场合或使用人的习惯,真正的关键点是如何体现出数据的价值。
大数据是数据挖掘产业化的表现。长久以来,数据挖掘的经典案例――“啤酒与尿布”被广为传颂,然而这一传奇故事显然跟不上时代大发展的步伐,取而代之的是谷歌成功预测流感的案例。数据的价值在于信息,而技术的价值在于利润,数据挖掘可以看作是专业技术领域的专业名词,到了商业领域就需要进一步的包装与升级。只有这样,一系列的开放式平台、技术解决方案才能迅速“火”起来。显而易见,这种商业的运作模式已经非常成熟和成功。目前,大数据已被视为创新和生产力提升的下一个前沿,正成为国家竞争力的要素之一,在世界范围内日益受到重视,多国政府加大了对大数据发展的扶持力度,甚至上升到国家战略的高度。某咨询公司研究显示,全球对大数据项目投资总额2012年已达45亿欧元(约60亿美元),2013、2014两年均会保持约40%的增长速度。
3.简要小结
当前,数据挖掘在专业领域的地位已经非常牢固,但大数据还受到民众和业界的诸多质疑,认为是一种商业噱头和忽悠。其实很多争论实质上并非在讨论同一问题。比如,有人举例说,《大数据时代》的作者维克托・迈尔―舍恩伯格认为 , “人们处理的数据从样本数据变成全部数据”的结论至少从目前的数据收集和分析能力来说是不可能实现的。我们应该看到,没有不变的真理,只有客观规律。任何技术都不是万能的,作为一种技术而言,它仅代表了一种发展方向,它因为能够解决某一现实问题而具备存在的价值;至于技术的商业化运用成不成功,则还受制于运用推广的方式等其它诸多因素。例如,对比上世纪末“互联网经济泡沫”破灭时的哀鸿遍野和前不久阿里巴巴在美国上市的一片赞歌,可以看出:互联网技术的发展势不可挡,互联网产业发展一波三折,只能说产业和技术紧密相联,但终究不是一回事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27