京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS Says 扩展篇IML:函数玩一玩
1. 元素函数
元素函数是针对矩阵里的元素进行操作的,比如:
|
abs( ) |
取绝对值 |
|
exp( ) |
e的元素次方 |
|
int( ) |
取整 |
|
log( ) |
取ln |
|
mod( ) |
取余 |
|
sqrt( ) |
将元素开方 |
举个栗子:
例子
proc iml;
a={9 -2.38, -1 0, 2 1};
c1=abs(a);
c2=exp(a);
c3=int(a);
c4=mod(a);
print a,c1,c2,c3,c4;
quit;
2. 矩阵函数
矩阵函数将对整个矩阵进行操作:
矩阵查询函数可以查询矩阵的一些基本信息,如行数、列数、行最大值、列最大值等等;
矩阵生成函数可以对矩阵进行分块、取对角线等,生成一个新的矩阵。
(1)矩阵查询函数
all (条件):当矩阵所有元素都满足条件时,返回1,否则返回0;
any (条件):只要矩阵中有一个元素满足条件,就返回1,否则返回0。
例子
proc iml;
a={9 -2.38, -1 0, 2 1};
c1=all(a>0);
c2=any(a>0);
print a,c1,c2;
quit;
loc(条件):返回满足条件的元素的标号,还可以与截取运算符[]搭配使用,获取标对应的数值。
例子
proc iml;
a={9 -1 3, 3 -3 0};
c1=loc(a>0);
c2=a[ loc(a>0) ];
print a,c1,c2;
quit;
nrow(矩阵):求矩阵行数;
ncol(矩阵):求矩阵列数;
type(矩阵):得到矩阵的类型,数值型返回N、字符型返回C,如果矩阵不含任何值,返回U。
length(矩阵):求矩阵每个元素的长度,只能是字符矩阵。
例子
proc iml;
a={9 -1 3, 3 -3 0};
b={"hello","world"};
c1=nrow(a);
c2=ncol(a);
c3=type(a);
c4=length(b);
print a,c1,c2,c3,c4;
quit;
(2)矩阵生成函数
通过这类函数得到一些简单、特殊的矩阵。
block(M1,M2...):创建分块对角阵;
diag(M):只保留矩阵M的对角线,其余元素均赋值为0;
vecdiag(M):将矩阵M的对角线元素变成列向量。
娘子,快来看大楼~!————→
例子
proc iml;
a={9 -1 , 3 -3};
b={1 2, 4 5};
c=block(a,b);
c1=diag(c);
c2=vecdiag(c);
print a,c1,c2;
quit;
i(n):创建n×n的单位阵;
j(row,col,value):创建row×col的矩阵,矩阵的数据均为value;
repeat(value,row,col):和上面的一样,生成row×col、元素均为value的矩阵;
insert(M1,M2,插入第n行,或插入第m列):将矩阵M2插入矩阵M1中,插入第n行,或者第m列,注意m和n必须有一个为0,因为这两个只能指定一个。
右边的朋友,我要是能和你一样高就好了。
例子
proc iml;
a=i(3);
b=j(2,4,7);
c=repeat(7,2,4);
d=insert(a,{1 -1 0},2,0);
print a,b,c,d;
quit;
uniform(seed):生成(0,1)均匀分布的伪随机数;
normal(seed):生成均值为0,方差为1的伪随机数;
例子
proc iml;
a=normal(1);
b=normal({1 1 1,1 1 1, 1 1 1});
c=normal(repeat(1,3,3));
d=uniform({2 2 2});
print a,b,c,d
quit;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17