京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS Says 扩展篇IML:函数玩一玩
1. 元素函数
元素函数是针对矩阵里的元素进行操作的,比如:
|
abs( ) |
取绝对值 |
|
exp( ) |
e的元素次方 |
|
int( ) |
取整 |
|
log( ) |
取ln |
|
mod( ) |
取余 |
|
sqrt( ) |
将元素开方 |
举个栗子:
例子
proc iml;
a={9 -2.38, -1 0, 2 1};
c1=abs(a);
c2=exp(a);
c3=int(a);
c4=mod(a);
print a,c1,c2,c3,c4;
quit;
2. 矩阵函数
矩阵函数将对整个矩阵进行操作:
矩阵查询函数可以查询矩阵的一些基本信息,如行数、列数、行最大值、列最大值等等;
矩阵生成函数可以对矩阵进行分块、取对角线等,生成一个新的矩阵。
(1)矩阵查询函数
all (条件):当矩阵所有元素都满足条件时,返回1,否则返回0;
any (条件):只要矩阵中有一个元素满足条件,就返回1,否则返回0。
例子
proc iml;
a={9 -2.38, -1 0, 2 1};
c1=all(a>0);
c2=any(a>0);
print a,c1,c2;
quit;
loc(条件):返回满足条件的元素的标号,还可以与截取运算符[]搭配使用,获取标对应的数值。
例子
proc iml;
a={9 -1 3, 3 -3 0};
c1=loc(a>0);
c2=a[ loc(a>0) ];
print a,c1,c2;
quit;
nrow(矩阵):求矩阵行数;
ncol(矩阵):求矩阵列数;
type(矩阵):得到矩阵的类型,数值型返回N、字符型返回C,如果矩阵不含任何值,返回U。
length(矩阵):求矩阵每个元素的长度,只能是字符矩阵。
例子
proc iml;
a={9 -1 3, 3 -3 0};
b={"hello","world"};
c1=nrow(a);
c2=ncol(a);
c3=type(a);
c4=length(b);
print a,c1,c2,c3,c4;
quit;
(2)矩阵生成函数
通过这类函数得到一些简单、特殊的矩阵。
block(M1,M2...):创建分块对角阵;
diag(M):只保留矩阵M的对角线,其余元素均赋值为0;
vecdiag(M):将矩阵M的对角线元素变成列向量。
娘子,快来看大楼~!————→
例子
proc iml;
a={9 -1 , 3 -3};
b={1 2, 4 5};
c=block(a,b);
c1=diag(c);
c2=vecdiag(c);
print a,c1,c2;
quit;
i(n):创建n×n的单位阵;
j(row,col,value):创建row×col的矩阵,矩阵的数据均为value;
repeat(value,row,col):和上面的一样,生成row×col、元素均为value的矩阵;
insert(M1,M2,插入第n行,或插入第m列):将矩阵M2插入矩阵M1中,插入第n行,或者第m列,注意m和n必须有一个为0,因为这两个只能指定一个。
右边的朋友,我要是能和你一样高就好了。
例子
proc iml;
a=i(3);
b=j(2,4,7);
c=repeat(7,2,4);
d=insert(a,{1 -1 0},2,0);
print a,b,c,d;
quit;
uniform(seed):生成(0,1)均匀分布的伪随机数;
normal(seed):生成均值为0,方差为1的伪随机数;
例子
proc iml;
a=normal(1);
b=normal({1 1 1,1 1 1, 1 1 1});
c=normal(repeat(1,3,3));
d=uniform({2 2 2});
print a,b,c,d
quit;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19