京公网安备 11010802034615号
经营许可证编号:京B2-20210330
标准正态分布函数的快速计算方法
标准正态分布的分布函数 $\Phi(x)$ 可以说是"数据分析师"统计计算中非常重要的一个函数,基本上有正态分布的地方都或多或少会用上它。在一些特定的问题中,我们"数据分析师"需要大量多次地计算这个函数的取值,比如我经常需要算正态分布与另一个随机变量之和的分布,这时候就需要用到数值积分,而被积函数就包含 $\Phi(x)$。如果 $Z\sim N(0,1), X\sim f(x)$,$f$ 是 $X$ 的密度函数,那么 $Z+X$ 的分布函数就是
我们"数据分析师"知道,$\Phi(x)$ 没有简单的显式表达式,所以它需要用一定的数值方法进行计算。在大部分的科学计算软件中,计算的精度往往是第一位的,因此其算法一般会比较复杂。当这个函数需要被计算成千上万次的时候,速度可能就成为了一个瓶颈。
当然有问题就会有对策,一种常见的做法是略微放弃一些精度,以换取更简单的计算。在大部分实际应用中,一个合理的误差大小,例如 $10^{-7}$,一般就足够了。在这篇文章中,给大家介绍两种简单的方法,它们都比R中自带的 pnorm() 更快,且误差都控制在 $10^{-7}$ 的级别。
第一种办法来自于经典参考书 Abramowitz and Stegun: Handbook of Mathematical Functions 的 公式 26.2.17 。其基本思想是把 $\Phi(x)$ 表达成正态密度函数 $\phi(x)$ 和一个有理函数的乘积。这种办法可以保证误差小于 $7.5\times 10^{-8}$,一段C++实现可以在 这里 找到。(代码中的常数与书中的略有区别,是因为代码是针对误差函数 $\mathrm{erf}(x)$ 编写的,它与 $\Phi(x)$ 相差一些常数)
我们来对比一下这种方法与R中 pnorm() 的速度,并验证其精度。
library(Rcpp) sourceCpp("test_as26217.cpp") x = seq(-6, 6, by = 1e-6) system.time(y <- pnorm(x)) ## user system elapsed ## 1.049 0.000 1.048 system.time(asy <- r_as26217ncdf(x)) ## user system elapsed ## 0.293 0.019 0.311 max(abs(y - asy)) ## [1] 6.968772e-08
可以看出,A&S 26.2.17 的速度大约是 pnorm() 的三倍,且误差也在预定的范围里,是对计算效率的一次巨大提升。
那么还有没有可能更快呢?答案是肯定的,而且你其实已经多次使用过这种方法了。怎么,不相信?看看下面这张图,你就明白了。
没错,这种更快的方法其实就是两个字:查表。它的基本想法是,我们预先计算好一系列的函数取值 $(x_i,\Phi(x_i))$,然后当我们需要计算某个点 $x_0$ 时,就找到离它最近的两个点 $x_k$ 和 $x_{k+1}$,再用线性插值的方法得到 $\Phi(x_0)$ 的近似取值:
什么?觉得这个方法太简单了?先别急,这里面还有不少学问。之前我们"数据分析师"说了,我们需要保证这种方法的误差不超过 $\epsilon=10^{-7}$,因此就需要合理地选择预先计算的点。由于 $\Phi(-x)=1-\Phi(x)$,我们暂且只需要考虑 $x$ 为正的情况。如果让 $x_i = ih,i=0,1,\ldots,N$,那么对函数 $f$ 进行线性插值的误差将不超过( 来源 )
其中 $\Vert f’’ \Vert_{\infty}$ 是函数二阶导绝对值的最大值。对于正态分布函数来说,它等于 $\phi(1)\approx 0.242$。于是令 $E(x)=10^{-7}$,我们就可以解出 $h\approx 0.001818$。最后,只要 $x_N>5.199$,即 $N\ge 2860$ 并另所有 $x>x_N$ 的取值等于1,就可以保证整个实数域上 $\Phi(x)$ 的近似误差都不超过 $10^{-7}$。
这种简单方法的实现我放在了 Github 上 ,源程序和测试代码也可以在文章最后找到。下面给出它的表现:
library(Rcpp) sourceCpp("test_fastncdf.cpp") x = seq(-6, 6, by = 1e-6) system.time(fasty <- r_fastncdf(x)) ## user system elapsed ## 0.043 0.024 0.066 max(abs(y - fasty)) ## [1] 9.99999e-08
与之前的结果相比,相当于速度是 pnorm() 的15倍!
我们似乎一直以为,在计算机和统计软件普及以后,一些传统的做法就会慢慢被淘汰,例如现在除了考试,或许大部分的时间我们都是在用软件而不是正态概率表。从教学与实际应用的角度来看,这种做法是 应该进行推广和普及的 ,但这也不妨碍我们从一些“旧知识”中汲取营养。关于这种大巧若拙的做法的故事还有很多,比如广为流传的 这一则 。在计算资源匮乏的年代,数据科学家"数据分析师"们想出了各种巧妙的办法来解决他们遇到的各种问题。现如今计算机的性能已经远不是当年可以媲迹,但前人的很多智慧却依然穿透了时间来为现在的我们提供帮助,不得不说这也是一种缘分吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23