京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据不应成为作恶的工具
牛津大学互联网学院教授维克托·迈尔-舍恩伯格曾以《大数据时代》《删除》两本看似“自相矛盾”的著作炸响了大数据的深潭,前者着重挖掘大数据的价值,而后者则指出在记忆不可磨灭状态下大数据对我们的生活造成的困扰,两书呈现了大数据的两面性。然而,在现实应用中,前者在商业及金融领域的潜在价值被不断挖掘,而《删除》中那些啼笑皆非的案例,总是被人们选择性遗忘,在大数据的裹挟下,我们正在进入被操控的“黑箱社会”。
美国马里兰大学教授弗兰克·帕斯奎尔所著的《黑箱社会:控制金钱和信息的数据法则》,分析了在互联网时代,各类数据收集挖掘企业是如何仔细检索、审视我们的生活和习惯,设置我们的生活议程,控制我们的视野范围,甚至左右社会的政治走向。帕斯奎尔可谓是向社会不公现象宣战的斗士,他曾在美国众议院的司法委员会上叫板谷歌、微软、雅虎,与他们的法律总顾问对峙。在书中,作者再燃愤怒之火,剑指这些掌握信息技术大权的互联网大鳄如何操控我们的生活,设置不平等的规则,将他人的命运甚至是整个经济社会的未来操纵于掌心。
所谓“黑箱社会”,是指在我们看不到的角落,有潜在的法则在暗暗起效,被黑色幕布遮掩之处,恰是人们的隐私、权益被暴露、利用、加工贩卖的狂欢之所。现代社会,人们已经无法查清自己被“贩卖”的次数,从第一次接到“神机妙算”的电话,到手机被各种借贷、炒房信息轰炸,再到自己被各种购物网站服务得“无微不至”,其实我们已经在大数据的牵引下,成为信息时代的透明人,是无数利益机构“精准营销”、“策略营销”的对象。
假如仅仅是商业上的“超服务”,尚在可接受的范围之类,但假如我们在互联网中留下的所有蛛丝马迹都被过度解读,无限联想,对于我们来说则可能是一场灾难。比如,A君在网上购买了一些糖尿病辅助食品,则被有心的大数据运营公司记录为“糖尿病患者”,而后他在求职过程中屡屡受挫,他始终不清楚导致他被拒的原因是他“被糖尿病”了。大数据带来的误解令我们百口莫辩,甚至年少轻狂时在网上偶发的言论都被当成“呈堂证供”。
大数据技术在给人们带来便捷的同时,也渗透进了人们生活的所有公共和私人空间,在人们完全不知情的情况下,我们的行为、特征、语言,被一遍遍计算、算计,它给我们贴上各种各样的标签,影响我们的日常生活,我们却鲜有申诉的权利。没有人能完全明了在数据的黑箱里究竟装了哪些运算法则,没有人能够在智能计算中“独善其身”。
技术秘密是大型互联网企业的万用挡箭牌,即使是在立法机构的一次次调整中,互联网企业也总能在现实的变通中,完美规避法律,毕竟没有哪个政府部门会在互联网时代拥有比企业更灵敏的嗅觉和快速的反应能力。
以书中所示的英国“Foundem”垂直搜索引擎公司来说,作为搜索领域的新生儿,简直是被谷歌玩弄于股掌之间,只要谷歌对其作出搜索降级的“处分决定”,它就难以在用户搜索关键词“价格对比”时出现在靠前的页面中,这对于一家互联网企业而言无异于灭顶之灾。只要谷歌稍动手脚,一家风光一时的企业就会在互联网中石沉大海,而谷歌想捧红哪家企业,也只要将其置顶,这家企业就会拥有源源不断的点击率。当公众质疑其搜索结果的公正性时,谷歌总会有相当多的理由以及技术秘密用以搪塞用户,只要谷歌不掀开自己的“技术黑箱”没有人知道里面究竟装的是规则与秩序,还是权利与利益。在流量为王的时代,谷歌仿若商业世界的帝王。当然,拥有这种权利的互联网企业,绝不仅谷歌一家,脸谱网、推特这些大型互联网企业在各自的领域亦有着相似的能量。
在美国的政治竞争中,互联网企业也会扮演重要的角色,它们甚至可以决定人们对这位候选人的认知度和整体印象,还可以设置话题议程,左右舆论风向,其强大的排序能力已经远远超出了其技术所应伸出的触角。一个被大型企业垄断的世界同独裁统治的世界一样是可怕的,一股缺乏有效制衡的“超力量”必然会不断地制造社会的“暗箱”,将规则与公平关进笼子里,而放出来的则是金钱与权利的欲望之火。
认清政府、大型企业之间的利益关系,更有助于我们看到很多社会问题的成因。就如同华尔街的贪婪并不能一味从金融大鳄身上找问题一样,其背后错综复杂的利益格局,信用评级机构、金融监管者及立法者之间相互缠绕的关系,才是问题的症结所在。在本书中,作者也用相当篇幅介绍了在金融领域“大数据”作恶的案例,其背后同样是人对数据的误用与滥用。
在《删除》中,维克托·迈尔-舍恩伯格曾就针对大数据带来的诸多社会病提出了以“删除”为核心,包括数字化节制、保护信息隐私权、打造良性的信息生态在内的六大对策。在《黑箱社会》中,作者继续进行了一些思路及方法上的探讨,虽在深度及广度上有所进步,可两位作者同样陷入了从揭露问题到提出希望式的书写。理论上正确的方法需要更多与现实短兵相接的能力,美好希望在现实中总会遭遇种种挫折尴尬。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15