京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在这样一个大数据的时代,很多产品团队都选择在产品早期就引入或搭建数据分析平台,并希望能够通过数据驱动产品的快速成长,但即便如此,大多数的初创企业还是难逃失败的厄运。除去战略、经营等导致企业死亡的情况,数据分析的「深度不够」也是让产品铩羽的重要原因——大多数企业构建的数据分析平台仅仅能看一些统计指标——而这并不足以指导产品改进,并使之走向成功!
数据分析师对产品用户和行为数据的研究可以大致划分为宏观层、微观层和中间层三个层次:
宏观层:由一系列的数据指标构成。如产品每日的「活跃用户数」、「新增用户数」、「订单数量」、「点赞的次数和人数」、「次日或7日留存率」等,这些指标能够帮您从整体上把握产品的运营状况;
微观层:由产品中每个用户及其行为的细节数据构成。如每一个用户的年龄性别……、他在什么时间打开应用、做了什么、他的购物车里都有哪些商品等,这些数据可以让您去深入的了解和理解每一个用户以及用户的行为?
中间层:中间层由一系列相互关联的分析方法、模型以及相应的数据构成。如行为分析、漏斗、留存、细分、画像洞察等等。
「中间层」是至关重要的一层——针对您产品和业务目标展开的大部分分析,都需要在中间层的方法模型支持下完成。这是因为:
如果,中间层能够基于丰富的维度提供有效的方法和模型,经过数据分析师认证的数据分析师就有机会对存在问题的宏观数据指标进行逐级深入的剖析(Drill down),逐步缩小问题的范围和人群,甚至深入微观层洞察相关的用户及行为,直至对问题原因得到清晰的认识(或有效猜测)——并据此构建出产品改进策略并逐步改进,产品就有机会走向成功。
相反,如果中间层缺失,或提供的方法模型不能支持您对问题指标进行足够的剖析,您就只能回到「看数据→拍脑袋」的老路上去,产品快速增长并最终走向成功的几率将因此降低。
以一款假想的「视频分享社区」产品为例:
该产品的运营负责人通过数据发现:新用户在注册第二天只有20%人回访(「宏观层」指标「次日留存率」低)
接下来,她将某天新增的用户划分为「第二天回访的用户」和「第二天不回访的用户」两个群体(作者按:「中间层」的人群细分),并且:
对这两群用户从各个维度进行了分析对比(作者按:「中间层」的细分、群体画像、行为分析等方法),结果发现这两群人的一个典型区别是:
根据上述差异,这位运营负责人猜测——首次使用时「拍摄并分享」会影响到第二天及以后的留存率。
于是,她进一步在两个群体中各抽取了少量用户数据进行数据分析,并查看他们的行为记录,发现:在首次使用时「拍摄并分享视频」的用户,往往会在收到朋友圈好友评论时返回应用,以便查看或回复评论。并且,得到评论较多的用户很快会「拍摄新的视频」。而「没有拍摄和分享视频」的用户则情况刚好相反。这位运营负责人的想法通过这些细节数据得到验证。
这位运营负责人将她的发现与产品经理以及其他团队成员进行了沟通,并得到认可。
大家一起基于这个发现,对产品本身进行了更为深入的数据分析,并选取了部分用户进行了电话调研。然后,大家制定了提升产品的策略:
随着产品用户的快速增长,产品团队的负责人很快与投资人敲定了新一轮融资,产品迈向成功……
宏观层的指标相对容易得到。而选择专业是数据分析师或构建合适的分析工具将中间层和微观层「解锁」,才是决定数据分析成败的关键!数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29