
数据分析,无处不在
作为一个比较活跃的年轻人,在大学期间除了读书外,我还参与过很多活动。大三时,我当过半年的境外黄金期权交易代理,自己有时也交易过几笔,有赔有赚。临毕业,组织过二手书回收,由于旧书价格和需求估计错误,最后亏得血本无归,事后总结,是没有好好分析市场和竞争对手(二手书店)。从那时候起,我就留心寻找有关市场分析方面实用知识的课程,
真正让我下决心参加数据分析师培训的,是回家时无意听到的一件事。20073年上半年,东昌府区某县开始投资建设铝厂,不久就出现资金短缺、无法周转的情况,当时合伙人四处融资,也曾经找上我父母。但由于厌恶风险和不了解行情等原因,父母并没有投钱。2014年春节期间,亲戚来串门,闲聊时讲起了某铝厂效益非常好,投资人全都得到了丰厚的红利。这时我才意识到这个铝厂就是当年那家资金链断裂、面临倒闭的铝厂。这件事告诉我,机遇在人人面前都是平等的,关键是你看自己能不能把握了,如果当时我能帮父母分析建设铝厂这个项目的话,说不定就抓住了这个机会。
带着对知识的渴求,我参加了2011年北京数据分析师培训,培训结束后,感触良多。我深深的体会到,数据分析是一门科学,同时也是一门艺术。现在使用学到的知识回头来分析当年的旧书交易,我总结了犯的错误:
第一,高估了市场需求。当时我只是觉得新生中购买旧书的人应该不少,就开始回收旧书。如果简单统计一下我所住的楼层中,有多少人购买了旧书的话,就会发现,大约9个人中才有一人购买旧书。而且,随着人们生活水平的提高,新生大都直接购买全新课本。
第二,收购旧书没有针对性。大学的课程多种多样,有一些课程是必修的,另外一些是选修的,参加必修课的人数肯定比参加选修课人数多,所以收购必修课旧书就更容易出手。当时我没有仔细分析,结果买断了大批无用书籍。
第三,忽略了竞争对手。学校的二手书店和我提供同样的业务,学生要买书时第一反应常常是去二手书店,我应该在同学中间多做宣传,吸引他们到我这来买书,比二手书店方便也便宜。
第四,没有计算现金流。学生毕业后新生入学前这两个月中,我必须屯放收购来的书,租用了学校外面的一间房。后来发现两个月的租金构成了我总成本的一半以上。
通过数据分析课程的学习,我已经掌握了市场调研、数据采集、分析预测和编制现金流量表这一基本项目分析流程,旧书变废纸的惨剧再也不会发生了。
此外,数据分析的科学性来自于其实用性,它来源于人类实践活动,也能回归到日常生活中。我母亲在银行工作,经常购买一些理财产品和基金项目,但从来没有计算过收益率。我按照课程习题中所学方法,帮母亲算了一笔账,发现活期存款加短期高利率理财产品的组合的收益率仅仅是定期存款的一半。做生意的人偶尔出现闲置资金,买一些短期理财产品很适合,但平常老百姓对于资金的流动性要求不是很高,购买短期理财产品就不如定期存款。
数据分析知识的用处不仅仅体现在日常生活之中,也体现在人们的工作当中。在我研究生期间,曾经接触过一个帮某电影网站建设数字版权管理系统(主要用处是让看电影的用户付费)的项目。使用数据分析,我计算了一下这个项目的成本和收益:由于是网络项目,其建设期只有半年,建设期资金在期初一次性投入,这笔资金主要分为网站给学校的劳务费用和使用数字版权管理系统时,向Adobe公司购买许可证的费用,以及购买服务器的费用。假设半年后系统成功运行,付费用户的数量来源于已经注册的非付费用户和每月新增用户两部分,那么付费用户数量对应于时间的函数应为一个修正指数函数和一个直线函数的相加。
通过引用优酷网收费用户增长数据,我得出了最终结论:在用户每次观看电影收费两块钱和折现率取7%的情况下,资金回收完成需要大约两年的时间。后来和网站经理的交流中,他们靠经验也得出了需要两年多才能回本这一结论。当时我感慨,通过数据分析,我作为一个技术人员竟然能站在资深网站经理的高度上来看问题。
数据分析在我们工作生活中无处不在,作为一门专业技术,它能帮助我们打理细节,算清楚账;作为一种思想,它教导我们以分析的眼光来看待问题,透过表面看清本质,独立思考。随着我国经济发展,市场化程度逐步提高,无论是国家政府部门、企事业单位还是个人,数据分析工作都是进行决策和做出工作决定之前的重要环,数据分析师的市场无疑是巨大的,即使在别的专业领域,项目数据分析也能使人如虎添翼。
希望在2016年,CDA数据分析师的队伍会像雨后春笋般不断壮大,数据分析思想会成为人们生活的一部分。作为新一代的年轻人,我会用自身实践,把项目数据分析行业发扬光大,为社会做出自己的贡献。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01