京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我所处的位置决定我看世界的角度。从这里望去,2016 年的分析领域令人振奋。有史以来,分析领域从未如此重要、如此有趣。------数据分析师培训
1. 机器学习在企业生根发芽
机器学习(Machine learning)的历史可以追溯到 1950 年,但直到最近,它都只是精英人才的领域并长期被人忽视。我预言机器学习会就此稳步发展,因为许多大型企业正在接纳机器学习。如今除了研究者和数字时代原住民,企业也在探索如何把机器学习变为生产力。在一些已经规范化的行业,模型解释性较差,曾导致模型难以应用。如今这些行业的从业者使用机器学习,寻找更多创造性的方法,从模型中选择变量,而这些变量之后能由常用工具进一步构建。机器学习从多个学科中获取营养,所以未来预计会产生更多跨学科的兴趣。回想去年 INFORMS 年会的主题,Dimitris Bertsimas 讲“现代优化视野下的统计与机器学习”( Statistics and Machine Learning via a Modern Optimization Lens )。我的同事 Patrick Hall 也对于“为什么是机器学习?为什么是现在?”(Why Machine Learning? Why Now?)这一话题给出了他的看法。
2. 物联网大潮降温,面对现实
根据 Gartner 公司的新科技周期理论(Hype Cycle)来看,物联网(Internet of Things, IoT)正处在科技周期的顶峰。但在 2016 年我预计物联网这个概念将有所降温,开始面对现实。如何采集是一个很实际的障碍——信息太多了。我的一个同事正在把我们新大楼的HVAC 暖通系统,作为一个物联网测试项目进行分析。这栋楼里到处都是传感器,但获取数据却并不容易。设施部门告诉他这是IT部门的职权,IT部门把他又踢到了制造商那里,因为 HVAC 收集数据之后发送给了制造商。“数据所有权”是一个在逐渐浮现的议题:你生产了数据,却无法获取它。如何证实自己的价值是物联网面对的更大挑战。物联网在企业级的整体生产应用依然有限。物联网给出的承诺无与伦比,所以在 2016 年让我们期待早期使用者们能解决问题,给出答案。
3. 大数据走出喧嚣,让模型变得丰富
大数据已经走出了喧嚣,产生了实际的价值。如今的建模者可以获取的数据种类前所未有地丰富(例如,非结构数据,地理空间数据,图像,声音),而这些数据使得模型可以变得更加丰富。大数据的另一新进展来自各类竞赛,这些竞赛超越了之前游戏化的形式,通过众包和数据分享产生了实际价值。拿前列腺癌 DREAM 挑战为例,参赛队伍使用四种临床诊断的匿名数据挑战开放的临床研究问题。这些数据来源众多,大部分是第一次公之于众。参赛队伍的数目史无前例,最终的获胜者战胜了之前此领域尖端研究者开发的模型。
4. 通过分析提高信息安全
随着物联网发展,传感器的广泛使用肯定让数码空间的犯罪分子感到兴奋。他们使用这些设备,用一种缓慢而低调的木马手段进行劫持。许多传统的侦查手段对此无效,因为侦查不再是寻找一个稀有事件的过程,而需要对情境中事件的累积进行理解。跟物联网一样,信息安全面对的一个挑战和数据有关。我预计先进的分析作为追踪数据的手段,能为侦查和预防做出新的贡献。很可惜,本文无法谈论大数据的合作中正在发展出的方法,因为我们不想让坏蛋知道我们是怎么发现它们的。这方面的许多优秀工作都是在高度安全的隔离环境中完成的。不过,2016 年 SAS 和其他各方仍会高度关注信息安全。
5. 分析驱动着企业与学界加强互动
北卡罗来纳州立大学的高级分析研究所(The Institute for Advanced Analytics, IAA)关注分析领域的硕士项目数量增长。新的硕士项目与日俱增。企业的招聘需求促进了增长,但同时我也看到了它们对于研究的兴趣。越来越多的企业在设立学术扩展部门,并表现出对于研究合作的浓厚兴趣。有时这种兴趣超越合作伙伴关系,转而直接雇佣学界名人。这些学界名人可能是休假期间来工作,或者在学界和企业往返。例如,机器学习顶尖研究者 Yann LeCun 曾在贝尔实验室工作,也曾是纽约大学的教授,曾是建立纽约大学数据科学中心的主管,现在在 Facebook 带领人工智能研究团队。INFORMS(运筹学与管理科学研究协会),通过为学界提供与分析有关的教学材料的方式,支持这种产学互动。2016 年 INFORMS 会为业界提供一个可查询的、分析领域(硕士)项目的数据库以促进双方往来,并提供新的 Associate Certified Analytics Professional 证书来帮助选拔毕业生。(数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29