
大数据时代 安防云存储的特征盘点
全球在2010年正式进入ZB时代,全球数据量大约每两年翻一番,意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。爆炸式增长的数据,正推动人类进入大数据(数据分析)的时代。
维基百科全书的定义:“大数据是飞速增长的,用现有数据库管理工具难以管理的数据集合”。这些数据包括:社交媒体、移动设备、科学计算和城市中部署的各类传感器等等,其中视频又是构成数据体量最大的一部分。据IMSResearch统计,2011年全球摄像头的出货量达到2646万台,预计到2015年摄像头出货量达5454万台。2011年一天产生的视频监控数据超过1500PB,而累计历史数据将更为庞大,在视频监控大联网、高清化推动下,视频监控业务步入数据洪水时代不可避免。
安防行业的大数据主要来源于平安城市、智慧城市和智能交通等大型安防项目。当前,智慧城市建设已成为地方政府推进城镇化发展的重要途径,而随着智慧城市的发展,对高清摄像机和智能化监控设备的需求会持续增长,安防行业大数据体量也将成几何性增长。
大数据考验云存储能力
安防行业还没有真正简单有效的技术可以通过对视频的处理来提取出更多结构化的数据。当然这也和很多其他因素有关,例如,摄像机的硬件性能不足以支持高级智能分析技术,对于一个城市来说数以万计的监控点每天产生的数据量也是惊人的,以现在的技术来说进行如此大规模的智能分析的成本过高,甚至超出了数据所带来的价值,这些都导致了安防行业大数据无法落实到底。
从目前大部分的安防系统架构看,安防大数据(数据分析师)的传输渠道主要是网络,一般都采用联网汇聚、分级存储的机制,网络一般为千兆网,存储也以一般的磁盘阵列存储为主。为了适应安防信息整合,安防数据分析和信息挖掘的需求,安防系统逐步倾向于互联、整合,而安防数据信息也逐渐的汇聚和集成,出现了万兆网络集中汇聚管理。这对安防存储提出个更高的要求。
为了解决这一问题,在云计算新一代信息技术的基础上,提出了云存储这一全新的概念,就是利用集群技术、网络技术、分布式文件管理等技术,将云分布的不同类型的存储设备协同工作,是一种存储兼顾管理的存储体系,为平安城市所需要的共享信息资源提供服务接口。使得视频监控系统变成云服务应用,从而提高系统海量视频数据的处理性能,以及整个系统容量的扩展。
有利应用将是大数据的云存储服务特征
从目前多种云存储的方案中可以明显体会到,云存储本身并非某一特定的技术路线,而是一种具有典型特质的存储服务方式,即可以明确地指出云存储是一种服务,而非某种单一的技术。云存储的服务就屏蔽了大量的技术细节、功能特点等繁琐的实现原理,做到无论其构成如何复杂、系统如何庞大,其服务方式始终是具有共性和可描述的。
那么云存储的服务可以描述为是统一、灵活、安全的存储服务。统一体现在对云存储内部的多种存储技术、多种存储设备形态的屏蔽。通过软件的统一整合向用户提供唯一的服务获取出口,具体可以体现为唯一访问IP、唯一的管理界面、唯一的操作方式等等。
灵活则体现在从云存储获取服务时的自由度上。用户使用云存储服务,将自己的数据写入云存储,可做到需要多少容量就获取多少容量,不受限于底层存储设备的规格限制。这个就需要云存储系统在容量分配时能够做到足够的精准,同时对调整的要求也要足够灵活。
安全体现的是云存储提供可靠保障的能力,对不同的数据可以提供不同的安全级别保障,差异化服务。视频监控数据体量庞大,因此常有不同的存储周期要求,不同的存储周期对于数据的完整性要求也不尽相同。因此云存储系统提供存储安全保障的能力应该匹配实际项目的需求,在项目成本控制和安全级别要求上达到平衡和共识。
更重要的如何更有利于应用,如果说传统存储的关键词在于性能和可靠性,那么未来存储将更注重对感知一词的实现。存储应该更为智能,更了解应用需求和数据(数据分析师培训)生命周期。很明显,感知更符合大数据对于存储的需求,大数据最根本的要点在于挖掘数据价值,那么从存储的角度讲,就是需要将系统做的更为智能,不仅是需要根据冷热程度将数据存至不同的介质上,更需要按照数据从创建到销毁的整个过程进行管理,并且依据系统中应用需求动态的调整存储策略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22