
数据分析的未来:2016年分析领域5大预测
我所处的位置决定我看世界的角度。从这里望去,2016 年的数据分析领域令人振奋。有史以来,分析领域从未如此重要、如此有趣。
1. 机器学习在企业生根发芽
机器学习(Machine learning)的历史可以追溯到 1950 年,但直到最近,它都只是精英人才的领域并长期被人忽视。我预言机器学习会就此稳步发展,因为许多大型企业正在接纳机器学习。如今除了研究者和数字时代原住民,企业也在探索如何把机器学习变为生产力。在一些已经规范化的行业,模型解释性较差,曾导致模型难以应用。如今这些行业的从业者使用机器学习,寻找更多创造性的方法,从模型中选择变量,而这些变量之后能由常用工具进一步构建。机器学习从多个学科中获取营养,所以未来预计会产生更多跨学科的兴趣。回想去年 INFORMS 年会的主题,Dimitris Bertsimas 讲“现代优化视野下的统计与机器学习”( Statistics and Machine Learning via a Modern Optimization Lens )。我的同事 Patrick Hall 也对于“为什么是机器学习?为什么是现在?”(Why Machine Learning? Why Now?)这一话题给出了他的看法。
2. 物联网大潮降温,面对现实
根据 Gartner 公司的新科技周期理论(Hype Cycle)来看,物联网(Internet of Things, IoT)正处在科技周期的顶峰。但在 2016 年我预计物联网这个概念将有所降温,开始面对现实。如何采集是一个很实际的障碍——信息太多了。我的一个同事正在把我们新大楼的HVAC 暖通系统,作为一个物联网测试项目进行分析。这栋楼里到处都是传感器,但获取数据却并不容易。设施部门告诉他这是IT部门的职权,IT部门把他又踢到了制造商那里,因为 HVAC 收集数据之后发送给了制造商。“数据所有权”是一个在逐渐浮现的议题:你生产了数据,却无法获取它。如何证实自己的价值是物联网面对的更大挑战。物联网在企业级的整体生产应用依然有限。物联网给出的承诺无与伦比,所以在 2016 年让我们期待早期使用者们能解决问题,给出答案。
3. 大数据走出喧嚣,让模型变得丰富
大数据已经走出了喧嚣,产生了实际的价值。如今的建模者可以获取的数据种类前所未有地丰富(例如,非结构数据,地理空间数据,图像,声音),而这些数据使得模型可以变得更加丰富。大数据的另一新进展来自各类竞赛,这些竞赛超越了之前游戏化的形式,通过众包和数据分享产生了实际价值。拿前列腺癌 DREAM 挑战为例,参赛队伍使用四种临床诊断的匿名数据挑战开放的临床研究问题。这些数据来源众多,大部分是第一次公之于众。参赛队伍的数目史无前例,最终的获胜者战胜了之前此领域尖端研究者开发的模型。
4. 通过分析提高信息安全
随着物联网发展,传感器的广泛使用肯定让数码空间的犯罪分子感到兴奋。他们使用这些设备,用一种缓慢而低调的木马手段进行劫持。许多传统的侦查手段对此无效,因为侦查不再是寻找一个稀有事件的过程,而需要对情境中事件的累积进行理解。跟物联网一样,信息安全面对的一个挑战和数据有关。我预计先进的分析作为追踪数据的手段,能为侦查和预防做出新的贡献。很可惜,本文无法谈论大数据的合作中正在发展出的方法,因为我们不想让坏蛋知道我们是怎么发现它们的。这方面的许多优秀工作都是在高度安全的隔离环境中完成的。不过,2016 年 SAS 和其他各方仍会高度关注信息安全。
5. 分析驱动着企业与学界加强互动
北卡罗来纳州立大学的高级分析研究所(The Institute for Advanced Analytics, IAA)关注(数据分析师培训)分析领域的硕士项目数量增长。新的硕士项目与日俱增。企业的招聘需求促进了增长,但同时我也看到了它们对于研究的兴趣。越来越多的企业在设立学术扩展部门,并表现出对于研究合作的浓厚兴趣。有时这种兴趣超越合作伙伴关系,转而直接雇佣学界名人。这些学界名人可能是休假期间来工作,或者在学界和企业往返。例如,机器学习顶尖研究者 Yann LeCun 曾在贝尔实验室工作,也曾是纽约大学的教授,曾是建立纽约大学数据科学中心的主管,现在在 Facebook 带领人工智能研究团队。INFORMS(运筹学与管理科学研究协会),通过为学界提供与分析有关的教学材料的方式(数据分析培训),支持这种产学互动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01