
大数据疯狂来袭 看电商如何招架
大数据时代的到来,不仅给电商带来机遇也带来了挑战。谢俊隽首先表示,大数据最大的价值在于提升电商从业者的存活率。它给电商带来可喜的成就是,有更多的电商可以存活下来并通过大数据找到盈利点。缔元信.网络数据做的本质的工作就是希望让更多的人通过使用大数据而活下来。利用数据统计,让数据的可读、可视、可应用的门槛降到大范畴,提升电商的存活概率,使电商行业走向更好的发展趋势。
陈涛的观点是,大数据对中小电商是很好的机会,可以让小电商跟大品牌去抗衡。其重视用营销手段提升转化率,利用大数据做转型,数据在很多情况下便成为一种资产。
周翔觉得,大数据对电商最大的价值是对供应链进行了优化。无论选择产品,还是物流配送,或是人力资源配置,都依托大数据从前端到终端进行全程优化。
宗瑞兴说,大数据才刚刚开始,未来可用的数据更多。利用数据收集、挖掘把数据资产变现。而缔元信.网络数据所做的工作,就把不同的平台打通,将数据转化成价值。大数据不是提高生存率,而是让能用数据的存活率提升。这既是机会,也是挑战,中国的EMP(电商管理平台)市场并没有建立起来,未来有更广阔的大数据发展空间。
梅涛认为,大数据浪潮到来后,最具颠覆性的是,能不能想到离散的数据之间是否具有关联关系。以前做精算模型只会针对同一行业进行分析,当物联网出现以后,增加了很多新的要素。原来割裂的数据或问题被联系起来分析,完全离散的数据之间也发现很多关联关系。
电商如何处切入大数据应用
专家们各有见解,各献干货。建议如下:
宗瑞兴:首先要打通内部,做好自己的数据管理体系,未来才好与外部数据对接。
周翔:分四步曲,首先要有良数据,然后在需要的业务产品中进行中试,再根据中试进行迭代,最后规模化。从良数据到中试就是对数据进行清洗的过程,迭代就是不断试错的过程。
陈涛:第一,培养数据的感觉,学习从营销到数据的关系。第二,请第三方服务商,给出建议性的规划或设计。数据研究的效果一定是隐性的,是慢慢的过程。可以听取缔元信.网络数据作为数据服务商,提供的专业建议规划,对整个公司的健康发展很有帮助。第三,在行业内,精心研究产品和服务。大数据是孤独的,不如营销圈热闹,需要静下心来研究技术。
谢俊隽:有两个建议。第一个是知己知彼,先把自己内部的数据做一次梳理。把数据统计和目标进行对接,数据的记录是符合业务操作的需求和流程,不管是解读成本,还是对工作的指导,都是从数据中汲取价值。第二个是对使用的数据统计工具进行梳理。
面对大数据浪潮,如何规避陷阱
大数据浪潮接踵而来,带来机遇的背后也隐藏着未知的陷阱。专家们用曾经历的陷阱,来警醒我们的下一步。谢俊隽建议道,单从熟悉的领域里解读出了它的价值,这个价值有可能是片面性的,若从另外一个行业看,便是一个陷阱。
陈涛认为,大数据对创业公司来说是很好的退出机制。在某种程度上,如果没有大的契机,现在的格局很难有所变化。数据不是副产品,是资产,把资产管理好了,比强势的累计销售额来得更加具有长远性。
周翔表示,从应用数据的角度,如果本身没有一套方法论,就要找到一个好的第三方服务商。首先可视、可读、客观用,三者缺一不可,理性判断以后,还是需要感性。而好的数据采集方式,加上好的数据整理方式,有一个好的方法论,帮助你做一些业务决策的判断,就是理性加感性结合在一起。
宗瑞兴觉得,抛开大数据,数据中最大问题就是如何解读它。要么请专业人员,要么找缔元信.网络数据这样专业的第三方数据公司。不管是大数据,还是小数据,一定要去深究,不深究永远发现不了存在的问题。
大数据未来将呈现什么状态,是垄断,还是开放?
当大数据的趋势越来越深入以后,数据是局部封闭使用价值,还是开放共享,一直是两难问题?把难题抛给嘉宾们,看他们如何解答?
宗瑞兴:有两个因素,第一,一些的确有垄断地位,是可以理解。第二,在数据市场形势下,可供交换的数据平台和数据产品太少。而数据以什么方式解读,数据市场、数据产品、数据对接也存在问题。在这个过程中,就需要第三方数据公司为我们提供服务。
周翔:数据产业链条的生态还没有形成,仅停留在营销层面。数据平台的提供商本身就是虚拟的厂商,是无形的租赁大家的市场,将所有的行为租赁给商户。当商户们知道如何更好地运用这些数据去创造价值的时候,整个闭环就形成了。
陈涛:从目前来看,短期内很难开放,即使开放也是局部的,或者是象征性的开放。企业很难把真实用户的消费记录开放出来,数据的交换,从传统企业、电商到大平台,是需要一个过程的。另一方面法律法规、行业标准的建立与实施也很重要。
谢俊隽:数据的开放心态是建立在他们在自己垂直领域的自信情况下。而缔元信.网络数据的数据统计技术在整个行业中是很自信的。
梅涛:做大数据和用大数据完全是两个概念。做大数据有BAT这样的巨头在,基本格局不会有颠覆性的变化。而在大数据基本环境的完善过程中使用大数据的空间是非常大的。面对大数据浪潮,要紧跟趋势,规避陷阱。
2014年,大数据将会从飘在空中、挂在业内人士口头的概念变成落地的实践。当然,不会是全面开花,而是会在部分领域率先突破。就互联网营销而言,以网民跨网站访问和使用轨迹数据为基础,进行数据挖掘、建立相关模型,并据此进行精准营销,这方面的应用将真正进入实战阶段。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07