京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据疯狂来袭 看电商如何招架
大数据时代的到来,不仅给电商带来机遇也带来了挑战。谢俊隽首先表示,大数据最大的价值在于提升电商从业者的存活率。它给电商带来可喜的成就是,有更多的电商可以存活下来并通过大数据找到盈利点。缔元信.网络数据做的本质的工作就是希望让更多的人通过使用大数据而活下来。利用数据统计,让数据的可读、可视、可应用的门槛降到大范畴,提升电商的存活概率,使电商行业走向更好的发展趋势。
陈涛的观点是,大数据对中小电商是很好的机会,可以让小电商跟大品牌去抗衡。其重视用营销手段提升转化率,利用大数据做转型,数据在很多情况下便成为一种资产。
周翔觉得,大数据对电商最大的价值是对供应链进行了优化。无论选择产品,还是物流配送,或是人力资源配置,都依托大数据从前端到终端进行全程优化。
宗瑞兴说,大数据才刚刚开始,未来可用的数据更多。利用数据收集、挖掘把数据资产变现。而缔元信.网络数据所做的工作,就把不同的平台打通,将数据转化成价值。大数据不是提高生存率,而是让能用数据的存活率提升。这既是机会,也是挑战,中国的EMP(电商管理平台)市场并没有建立起来,未来有更广阔的大数据发展空间。
梅涛认为,大数据浪潮到来后,最具颠覆性的是,能不能想到离散的数据之间是否具有关联关系。以前做精算模型只会针对同一行业进行分析,当物联网出现以后,增加了很多新的要素。原来割裂的数据或问题被联系起来分析,完全离散的数据之间也发现很多关联关系。
电商如何处切入大数据应用
专家们各有见解,各献干货。建议如下:
宗瑞兴:首先要打通内部,做好自己的数据管理体系,未来才好与外部数据对接。
周翔:分四步曲,首先要有良数据,然后在需要的业务产品中进行中试,再根据中试进行迭代,最后规模化。从良数据到中试就是对数据进行清洗的过程,迭代就是不断试错的过程。
陈涛:第一,培养数据的感觉,学习从营销到数据的关系。第二,请第三方服务商,给出建议性的规划或设计。数据研究的效果一定是隐性的,是慢慢的过程。可以听取缔元信.网络数据作为数据服务商,提供的专业建议规划,对整个公司的健康发展很有帮助。第三,在行业内,精心研究产品和服务。大数据是孤独的,不如营销圈热闹,需要静下心来研究技术。
谢俊隽:有两个建议。第一个是知己知彼,先把自己内部的数据做一次梳理。把数据统计和目标进行对接,数据的记录是符合业务操作的需求和流程,不管是解读成本,还是对工作的指导,都是从数据中汲取价值。第二个是对使用的数据统计工具进行梳理。
面对大数据浪潮,如何规避陷阱
大数据浪潮接踵而来,带来机遇的背后也隐藏着未知的陷阱。专家们用曾经历的陷阱,来警醒我们的下一步。谢俊隽建议道,单从熟悉的领域里解读出了它的价值,这个价值有可能是片面性的,若从另外一个行业看,便是一个陷阱。
陈涛认为,大数据对创业公司来说是很好的退出机制。在某种程度上,如果没有大的契机,现在的格局很难有所变化。数据不是副产品,是资产,把资产管理好了,比强势的累计销售额来得更加具有长远性。
周翔表示,从应用数据的角度,如果本身没有一套方法论,就要找到一个好的第三方服务商。首先可视、可读、客观用,三者缺一不可,理性判断以后,还是需要感性。而好的数据采集方式,加上好的数据整理方式,有一个好的方法论,帮助你做一些业务决策的判断,就是理性加感性结合在一起。
宗瑞兴觉得,抛开大数据,数据中最大问题就是如何解读它。要么请专业人员,要么找缔元信.网络数据这样专业的第三方数据公司。不管是大数据,还是小数据,一定要去深究,不深究永远发现不了存在的问题。
大数据未来将呈现什么状态,是垄断,还是开放?
当大数据的趋势越来越深入以后,数据是局部封闭使用价值,还是开放共享,一直是两难问题?把难题抛给嘉宾们,看他们如何解答?
宗瑞兴:有两个因素,第一,一些的确有垄断地位,是可以理解。第二,在数据市场形势下,可供交换的数据平台和数据产品太少。而数据以什么方式解读,数据市场、数据产品、数据对接也存在问题。在这个过程中,就需要第三方数据公司为我们提供服务。
周翔:数据产业链条的生态还没有形成,仅停留在营销层面。数据平台的提供商本身就是虚拟的厂商,是无形的租赁大家的市场,将所有的行为租赁给商户。当商户们知道如何更好地运用这些数据去创造价值的时候,整个闭环就形成了。
陈涛:从目前来看,短期内很难开放,即使开放也是局部的,或者是象征性的开放。企业很难把真实用户的消费记录开放出来,数据的交换,从传统企业、电商到大平台,是需要一个过程的。另一方面法律法规、行业标准的建立与实施也很重要。
谢俊隽:数据的开放心态是建立在他们在自己垂直领域的自信情况下。而缔元信.网络数据的数据统计技术在整个行业中是很自信的。
梅涛:做大数据和用大数据完全是两个概念。做大数据有BAT这样的巨头在,基本格局不会有颠覆性的变化。而在大数据基本环境的完善过程中使用大数据的空间是非常大的。面对大数据浪潮,要紧跟趋势,规避陷阱。
2014年,大数据将会从飘在空中、挂在业内人士口头的概念变成落地的实践。当然,不会是全面开花,而是会在部分领域率先突破。就互联网营销而言,以网民跨网站访问和使用轨迹数据为基础,进行数据挖掘、建立相关模型,并据此进行精准营销,这方面的应用将真正进入实战阶段。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29