
“世界第一行销之神杰亚伯拉罕的《选对池塘钓大鱼》一书中,把不同的客户群描述成鱼,而不同的客户群的集合就是不同的池塘,企业应该根据自己的目标客户,去思考怎样借助从别人已经建立起来的池塘中快速找到目标客户。”
大数据分析挑战无限Gartner 调查显示:55%的组织正在实施大数据方案来提升客户体验,49%的组织使用大数据方案来改进流程效率;42%的企业正在寻找新产品、建立新的业务模型。然而,大数据分析却是企业现今面临的一大挑战,因为他们不仅需要管理不断增长的原生数据;而且,在物联网高度发展的今天,由于巨大数据量来源不同,有的来自传感器、机械设备,还有的来自社交媒体等等,多种多样的数据来源又给企业的大数据分析竖起一座屏障。
解决上述难题的条件,是企业必须要选择正确的大数据分析平台,即要选对池塘,只有这样才能钓出少量数据中的“大鱼”。
戴尔Cloudera数据分析应有尽有谈到大数据分析,毫无疑问,Hadoop是最受企业欢迎的数据分析平台。但Hadoop集群的安装、配置及运行,却有许多地方需要慎重考量。如软件方面,如何选择合适的Hadoop分布式与扩展软件和监测与管理软件?在硬件方面,如何分布Hadoop服务的物理节点?如何选择合适的服务器?在功能方面,Hadoop平台的性能与扩展性表现如何?等等。
针对Hadoop所存在的这一系列问题,戴尔联合Cloudera推出了Dell Cloudera大数据解决方案。
Dell Cloudera提供了包括硬件、软件、资源和服务在内所有Hadoop所需的东西。使用该解决方案,可帮助用户轻松解决与Hadoop部署、管理等相关的各种问题,快速从海量数据中的提取价值。
戴尔Cloudera软硬件兼施戴尔Cloudera是由Cloudera服务以及Cloudera管理套件组成的一个参考架构,可以让开源Hadoop在数据驱动的企业在生产环境中高效运行。
硬件结果处理更快速硬件方面,戴尔的PowerEdge C2100机架服务器和PowerConnect 6248以太网交换机都已经在大数据部署中成功应用,而戴尔Cloudera解决方案正是基于这个组件。Dell PowerEdge C2100服务器可让用户同时拥有内存和磁盘容量,它专门设计用于最大化数据中心中空间、电力和成本效益的。其中内存及存储的密度对数据中心至关重要,PowerEdge C2100可容纳18个DDR3内存插槽,最高支持144GB的内存容量,企业可以更快的速度获得数据分析结果。同时PowerEdge C2100机架服务器为MapReduce、Web analytics和数据库提供了内存以及磁盘。另外,Dell PowerConnect 6248提供了完整的48千兆以太网及3层交换机,支持更高效的机架密度以及核心交换的高级功能。
软件Hadoop管理更透明软件方面,在Hadoop集群内部以及Hadoop集群之间交付高能见度。戴尔Cloudera通过结合专家支持以及交付透明管理控制的软件,允许Hadoop维护人员以高效的方式进行集群资源的精确部署及管理。同时,戴尔Cloudera允许将与现代IT管理相似的业务指标以可支付的成本在生产环境中运行Hadoop集群,达到资源利用最优化。其内置的可预测功能能够预见Hadoop基础设施的改变,从而确保了操作的可靠性。
此外,戴尔还为Cloudera大数据解决方案提供服务及支持。保证企业的解决方案由专业的软硬件团队支持,根据企业特定的需求进行量身定做。
戴尔Cloudera内存式大数据解决方案的惊人表现戴尔中国和SAP中国为某石油客户在SAP HANA数据库+Compellent存储全闪存技术的BI分析系统的性能:
•星形模型设计,包含2个事实表数据,明细数据模型、指标汇总模型•6个维度表数据,编号维表、ID维表、组织维度表、人员姓名、三级单位名称、分公司名称•主表包含180亿条记录,数据分析量超过60TB容量!
原有系统,2小时以上计算出结果,且易发生中断……采用戴尔Compellent存储全闪存技术在SAP HANA的新商业智能架构,单个查询缩短到20秒以内,400并发查询运行缩短到10分钟以内。
戴尔自身就是这一内存式“大数据”方案的使用者,用于企业内部的“精准营销” 智慧决策和分析系统。在2015年,戴尔更获得了"SAP HANA Innovation Award-2015"第一名的殊荣。
结语“鱼是游动的,机会也是在变化的,我们必须不断变化位置来寻找大鱼,并且在其饥饿的时候投下鱼饵,将其钓上来。”——《选对池塘钓大鱼》
在这个数据颠覆一切的时代,企业的数据不断变化,企业也要以不断发展的眼光挑选出适合自己的数据分析平台。选对平台,才能钓出数据池塘之下的大鱼——大价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29