
本文基于R语言进行基本数据统计分析,包括基本作图,线性拟合,逻辑回归,bootstrap采样和Anova方差分析的实现及应用。
不多说,直接上代码,代码中有注释。
1. 基本作图(盒图,qq图)
#basic plot boxplot(x) qqplot(x,y)
2. 线性拟合
#linear regression n = 10 x1 = rnorm(n)#variable 1 x2 = rnorm(n)#variable 2 y = rnorm(n)*3 mod = lm(y~x1+x2) model.matrix(mod) #erect the matrix of mod plot(mod) #plot residual and fitted of the solution, Q-Q plot and cook distance summary(mod) #get the statistic information of the model hatvalues(mod) #very important, for abnormal sample detection
3. 逻辑回归
#logistic regression x <- c(0, 1, 2, 3, 4, 5) y <- c(0, 9, 21, 47, 60, 63) # the number of successes n <- 70 #the number of trails z <- n - y #the number of failures b <- cbind(y, z) # column bind fitx <- glm(b~x,family = binomial) # a particular type of generalized linear model print(fitx) plot(x,y,xlim=c(0,5),ylim=c(0,65)) #plot the points (x,y) beta0 <- fitx$coef[1] beta1 <- fitx$coef[2] fn <- function(x) n*exp(beta0+beta1*x)/(1+exp(beta0+beta1*x)) par(new=T) curve(fn,0,5,ylim=c(0,60)) # plot the logistic regression curve
# bootstrap # Application: 随机采样,获取最大eigenvalue占所有eigenvalue和之比,并画图显示distribution dat = matrix(rnorm(100*5),100,5) no.samples = 200 #sample 200 times # theta = matrix(rep(0,no.samples*5),no.samples,5) theta =rep(0,no.samples*5); for (i in 1:no.samples) { j = sample(1:100,100,replace = TRUE)#get 100 samples each time datrnd = dat[j,]; #select one row each time lambda = princomp(datrnd)$sdev^2; #get eigenvalues # theta[i,] = lambda; theta[i] = lambda[1]/sum(lambda); #plot the ratio of the biggest eigenvalue } # hist(theta[1,]) #plot the histogram of the first(biggest) eigenvalue hist(theta); #plot the percentage distribution of the biggest eigenvalue sd(theta)#standard deviation of theta #上面注释掉的语句,可以全部去掉注释并将其下一条语句注释掉,完成画最大eigenvalue分布的功能
4. ANOVA方差分析
#Application:判断一个自变量是否有影响 (假设我们喂3种维他命给3头猪,想看喂维他命有没有用) # y = rnorm(9); #weight gain by pig(Yij, i is the treatment, j is the pig_id), 一般由用户自行输入 #y = matrix(c(1,10,1,2,10,2,1,9,1),9,1) Treatment <- factor(c(1,2,3,1,2,3,1,2,3)) #each {1,2,3} is a group mod = lm(y~Treatment) #linear regression print(anova(mod)) #解释:Df(degree of freedom) #Sum Sq: deviance (within groups, and residuals) 总偏差和 # Mean Sq: variance (within groups, and residuals) 平均方差和 # compare the contribution given by Treatment and Residual #F value: Mean Sq(Treatment)/Mean Sq(Residuals) #Pr(>F): p-value. 根据p-value决定是否接受Hypothesis H0:多个样本总体均数相等(检验水准为0.05) qqnorm(mod$residual) #plot the residual approximated by mod #如果qqnorm of residual像一条直线,说明residual符合正态分布,也就是说Treatment带来的contribution很小,也就是说Treatment无法带来收益(多喂维他命少喂维他命没区别)
(左)用 y = matrix(c(1,10,1,2,10,2,1,9,1),9,1)和
(右)y = rnorm(9);
的结果。可见如果给定猪吃维他命2后体重特别突出的数据结果后,qq图种residual不在是一条直线,换句话说residual不再符合正态分布,i.e., 维他命对猪的体重有影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28