京公网安备 11010802034615号
经营许可证编号:京B2-20210330
通信世界网消息(CWW) 1月8日,2016大数据生态纵览峰会在北京成功举办。逾千名来自全国各地的大数据行业从业者和业内知名专家、领军企业高管汇聚一堂,共同探讨中国大数据行业的发展现状和未来走向。
此次峰会由经管之家CDA数据分析师主办,邀请了台北医学大学教授谢邦昌、IBM大数据产品总监洪建勋,永洪科技联合创始人谢玲,贵阳大数据交易所首席运营官李国静,华为大数据总监刘冬冬,网易云市场总监章鑫辉,Oracle(甲骨文)全球职业教育项目北方区经理戎鹏、TalkingData合伙人、执行副总裁林逸飞,SAS中国首席咨询顾问高居泰等嘉宾出席峰会。
大数据成“利器” 2016或出现新蓝海
峰会上,CDA协会秘书长玉霜峰发表致辞。他表示,助力数据分析行业的整体进步,是CDA协会始终不渝的奋斗目标,希望有越来越多的机构、企业和数据分析师能为行业进步贡献力量。
在技术层面,IBM中国区大数据产品总监洪建勋介绍, 去年2月份IBM与业内IT公司一起成立了ODP的组织,共同打造一个企业级客户所共同所期望的Hadoop环境,目的是使得公司之间工具和产品能够互融互通;去年6月份IBM对Spark开源,把十多年的积累无偿开源给Spark社区,在旧金山建立一个Spark的社群,研究Spark和已经有的业务融合在一起,做更多的发展。
“在我们看起来技是非常重要,但是技术并不是为了技术而技术,所有的技术为业务服务”,洪建勋介绍,技术很容易被淘汰,IT行业跟通讯行业这几年发展非常快,从业人员不掌握跟业务相关的东西,过几年以前学的知识就会被刷新掉。
在“以和为贵”分论坛,华为大数据总监刘冬冬告诉记者,大数据是一个可以细分出许多领域的行业,要有数据源,要有数据合并公司,要有数据挖掘,要有数据应用、可视化、存储和计算,还要有咨询,蕴藏着很大机会,但是目前这个产业链条还不完善,最缺的是把这些不同功能的公司组合起来。
“2016年大数据行业会继续加速发展,可能在2017年是一个爆发点,所有行业行业都会被大数据冲击,所有企业都会意识到该玩大数据。产品同质化越来越很严重,最终会变成以客户为中心,以数据为支撑。未来企业的竞争方式是你有5个维度的数据,而我有10个维度的数据,那我就赢了。”刘冬冬说。
随着企业对数据服务方面的需求,云服务市场也会出现新的增长点。网易云市场总监章鑫辉认为,目前PaaS服务在国内的市场份额在国内占了不到百分之10%,未来这方面的市场会有一个比较大的增长。“目前美国市场中to B业务的资本配比占到了40%,C端业务占60%,而在中国 to B业务占到了1%,大部分资本流向C端业务,而各种C端业务出现也就意味着各种企业需要被服务,需要技术服务、管理服务等等,在云服务IaaS层趋于饱和的情况下,PaaS曾和SaaS层可能是下一个增长点。”章鑫辉说。
Oracle(甲骨文)全球职业教育项目北方区经理戎鹏更加看好那些利用大数据创业者的未来,“未来预计会有许多创业公司涌现,可以会出现类似于BAT的公司,体量肯定没那么大,但是它的创意是全新的,能找到一个新的蓝海”。
构建数据人才考核标准 甲骨文CDA开启联合认证
随着大数据产业在中国井喷式发展,数据人才缺口随之增大,数据分析人才培养教育成为大数据产业链中不可或缺的一环。而同时,数据分析师行业也面临着无认证标准、无考核体系等问题。
峰会当天,经管之家CDA数据分析师与Oracle(甲骨文)举行了签约仪式,双方将在数据分析人才认证方面展开合作,在大数据领域推出联合认证。
CDA数据分析师市场总监曹鑫介绍,去年11月份,CDA数据分析师与中华采矿协会(台湾)达成战略合作联盟,建立两岸专业人才流动性认证制度,这次与甲骨文的合作是CDA在建立行业认证标准方面的又一次新尝试。
“目前培训行业普遍存在一个问题,就是急功近利”,Oracle(甲骨文)全球职业教育项目北方区经理戎鹏表示,这一点体现在对所谓流行技术的追逐,有些底层和核心的技术与能力是不会过时的,反而会随着分析师职业生涯越来越值钱,甲骨文在做培训的时候非常关注底层技术的培养,CDA数据分析师在这方面同样把握得很好,既会考虑到行业里的流行技术,也会考虑到底层核心内容,这也是促成双方合作的原因。
曹鑫表示,未来CDA数据分析师将与更多优秀展开深入合作,推出更多优质的数据分析师人才教育课程,共同做好数据分析人才培训市场。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27