
通信世界网消息(CWW) 1月8日,2016大数据生态纵览峰会在北京成功举办。逾千名来自全国各地的大数据行业从业者和业内知名专家、领军企业高管汇聚一堂,共同探讨中国大数据行业的发展现状和未来走向。
此次峰会由经管之家CDA数据分析师主办,邀请了台北医学大学教授谢邦昌、IBM大数据产品总监洪建勋,永洪科技联合创始人谢玲,贵阳大数据交易所首席运营官李国静,华为大数据总监刘冬冬,网易云市场总监章鑫辉,Oracle(甲骨文)全球职业教育项目北方区经理戎鹏、TalkingData合伙人、执行副总裁林逸飞,SAS中国首席咨询顾问高居泰等嘉宾出席峰会。
大数据成“利器” 2016或出现新蓝海
峰会上,CDA协会秘书长玉霜峰发表致辞。他表示,助力数据分析行业的整体进步,是CDA协会始终不渝的奋斗目标,希望有越来越多的机构、企业和数据分析师能为行业进步贡献力量。
在技术层面,IBM中国区大数据产品总监洪建勋介绍, 去年2月份IBM与业内IT公司一起成立了ODP的组织,共同打造一个企业级客户所共同所期望的Hadoop环境,目的是使得公司之间工具和产品能够互融互通;去年6月份IBM对Spark开源,把十多年的积累无偿开源给Spark社区,在旧金山建立一个Spark的社群,研究Spark和已经有的业务融合在一起,做更多的发展。
“在我们看起来技是非常重要,但是技术并不是为了技术而技术,所有的技术为业务服务”,洪建勋介绍,技术很容易被淘汰,IT行业跟通讯行业这几年发展非常快,从业人员不掌握跟业务相关的东西,过几年以前学的知识就会被刷新掉。
在“以和为贵”分论坛,华为大数据总监刘冬冬告诉记者,大数据是一个可以细分出许多领域的行业,要有数据源,要有数据合并公司,要有数据挖掘,要有数据应用、可视化、存储和计算,还要有咨询,蕴藏着很大机会,但是目前这个产业链条还不完善,最缺的是把这些不同功能的公司组合起来。
“2016年大数据行业会继续加速发展,可能在2017年是一个爆发点,所有行业行业都会被大数据冲击,所有企业都会意识到该玩大数据。产品同质化越来越很严重,最终会变成以客户为中心,以数据为支撑。未来企业的竞争方式是你有5个维度的数据,而我有10个维度的数据,那我就赢了。”刘冬冬说。
随着企业对数据服务方面的需求,云服务市场也会出现新的增长点。网易云市场总监章鑫辉认为,目前PaaS服务在国内的市场份额在国内占了不到百分之10%,未来这方面的市场会有一个比较大的增长。“目前美国市场中to B业务的资本配比占到了40%,C端业务占60%,而在中国 to B业务占到了1%,大部分资本流向C端业务,而各种C端业务出现也就意味着各种企业需要被服务,需要技术服务、管理服务等等,在云服务IaaS层趋于饱和的情况下,PaaS曾和SaaS层可能是下一个增长点。”章鑫辉说。
Oracle(甲骨文)全球职业教育项目北方区经理戎鹏更加看好那些利用大数据创业者的未来,“未来预计会有许多创业公司涌现,可以会出现类似于BAT的公司,体量肯定没那么大,但是它的创意是全新的,能找到一个新的蓝海”。
构建数据人才考核标准 甲骨文CDA开启联合认证
随着大数据产业在中国井喷式发展,数据人才缺口随之增大,数据分析人才培养教育成为大数据产业链中不可或缺的一环。而同时,数据分析师行业也面临着无认证标准、无考核体系等问题。
峰会当天,经管之家CDA数据分析师与Oracle(甲骨文)举行了签约仪式,双方将在数据分析人才认证方面展开合作,在大数据领域推出联合认证。
CDA数据分析师市场总监曹鑫介绍,去年11月份,CDA数据分析师与中华采矿协会(台湾)达成战略合作联盟,建立两岸专业人才流动性认证制度,这次与甲骨文的合作是CDA在建立行业认证标准方面的又一次新尝试。
“目前培训行业普遍存在一个问题,就是急功近利”,Oracle(甲骨文)全球职业教育项目北方区经理戎鹏表示,这一点体现在对所谓流行技术的追逐,有些底层和核心的技术与能力是不会过时的,反而会随着分析师职业生涯越来越值钱,甲骨文在做培训的时候非常关注底层技术的培养,CDA数据分析师在这方面同样把握得很好,既会考虑到行业里的流行技术,也会考虑到底层核心内容,这也是促成双方合作的原因。
曹鑫表示,未来CDA数据分析师将与更多优秀展开深入合作,推出更多优质的数据分析师人才教育课程,共同做好数据分析人才培训市场。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15