
大数据支撑区域商标品牌发展指数
实施商标战略带来的显著效果,为我省编制区域商标品牌发展指数提供了大数据基础。南京理工大学知识产权学院,是由江苏省、工信部、知识产权局共建的知识产权学院,承担了此次指数制定工作。经过了为期半年左右的数据调研、部门意见调研、地方意见调研、召开专家论证会等基础工作,构建了区域商标品牌发展指数报告。
“通过对2014年全省13个市域商标品牌发展状况进行调研,并按模型进行测算分析,得出商标品牌发展的内在规律。”南京理工大学知识产权学院常务副院长钱建平说,为了让指数更具指导性、针对性,商标品牌发展的内在规律总结为5个一级指标:品牌政策支持、品牌发展实效、品牌保护力度、社会协同效应、品牌发展潜力等5个指数。
“5个一级指标不仅有政策层面的支持、保护,还有企业主体角度的自我发展,基本涵盖了一个商标品牌发展的路径和需要的环境。”吴永才说,从各地指数发展情况来看,先发优势并不是高枕无忧,后来者完全可以实现弯道超越。
从全省整体来看,区域商标品牌发展现状整体良好,但是区域差异不小,镇江、泰州、宿迁品牌经济发展分别在苏南、苏中、苏北地区相对较弱。数据显示,2014年区域商标品牌发展指数排名前4位的分别是苏州、南京、无锡、南通。值得注意的是,这些地区的商标品牌发展指数与GDP排名正相关,也就是说,经济发展速度较快的地区,对商标品牌的发展保护重视程度也越高。苏州以0.8311的综合指数排位第一,遥遥领先于最后一位宿迁(指数仅为0.6238)。后5位为镇江、连云港、泰州、盐城和宿迁。“从总体来看,苏州的商标品牌发展走在全省前列。这与苏州经济发展状况密切相关,市场经济发达的地区,其经济发展就更追求市场的规范性,更注重品牌经济的推动作用。”钱建平说。
有意思的是,扬州、淮安、盐城等地区,其综合指数与GDP并不匹配,其中扬州GDP排名第八,区域商标品牌发展指数为第五,淮安的GDP排名第11位,其发展指数为第八,盐城的GDP排名第七,其发展指数则为第12位。
具体来看,在品牌政策支持指数方面,苏北地区的品牌政策支持指数较为突出,此项排名中,淮安以0.8141排名第一,徐州以0.7866排名第三,连云港以0.756排名第八。据了解,目前全省13个省辖市均设有品牌发展专门领导机构,但各地区领导机构运行情况有所差异,南通、苏州、常州和泰州机构较为活跃,南京市、淮安市经费投入较大,其他地区在相对活跃度、经费投入度上表现一般。
品牌保护力度、社会协同效应两个指数,也是从政策、社会环境方面对商标品牌的发展给予支持。其中,品牌保护力度指数主要包括商标侵权行政案件数量、商标侵权行政案件案值、移送司法的商标侵权行政案件数量、法院审理的商标案件数量和权利人品牌保护满意度。品牌保护最强的是苏州,以0.8870排名第一,南京、南通分列二三位。去年苏州商标侵权行政案件案值全省第一,具体数额比其他十二个市域加起来还要高。按照知识产权强省建设的要求,“十三五”期间,全省权利人满意度要达到80%,全社会品牌认知度超过75%,根据这一标准,目前各地方权利人品牌保护满意度、各地区社会品牌认知度均低于该目标。
在5个一级指标中,品牌发展实效指数最能给人直观感受,也最具代表性。这一指数包含的指标有国内有效注册商标数量、国际商标数量、地理标志数量、每万户市场主体拥有国内注册商标数量、驰名商标数量、江苏省著名商标数量、江苏省名牌产品数量、省重点培育与发展的国际知名品牌数量、自主品牌企业增加值占GDP比重和商标质押融资数量。其中,苏州以0.8679排名第一,排在最后一位的连云港仅为0.6094。目前各地区间差异较为明显,以国际注册商标数量来说,苏州是连云港的27倍多。全国每万户市场主体的商标拥有量超过1200件,我省无锡、苏州、南京、常州、扬州均达到或超过这一平均水平。
吴永才说,由于江苏省区域商标品牌发展指数涵盖内容全面丰富,包括了30项具体指标,为了更好地为地方商标品牌发展工作提供明确的指导性,有必要设置核心指标。因此,区域商标品牌发展指数从30个二级指标中选出了7个核心指标:品牌发展专项经费投入情况、国内有效注册商标数量、驰名商标数量、自主品牌企业增加值占GDP的比重、商标侵权行政案值、商标代理机构规模化发展水平和年度自主品牌企业增加值增长率。
为什么要设定这7个指标为核心指标?对此,省工商局商标处副处长张传博解释说,在设立核心指标时,主要遵循重要、导向和比例三个原则,将每个一级指标中最重要、权重最高的指标、最能体现一级指标内涵的指标设为核心指标,为各地开展商标品牌建设确立明确的导向。同时,指标之间也需要平衡,即核心指标个数与一级指标权重相适应。由于品牌发展实效指数是一级指标中权重最高的指标,因此将其中的三个指标设为了核心指标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29