
大数据支撑区域商标品牌发展指数
实施商标战略带来的显著效果,为我省编制区域商标品牌发展指数提供了大数据基础。南京理工大学知识产权学院,是由江苏省、工信部、知识产权局共建的知识产权学院,承担了此次指数制定工作。经过了为期半年左右的数据调研、部门意见调研、地方意见调研、召开专家论证会等基础工作,构建了区域商标品牌发展指数报告。
“通过对2014年全省13个市域商标品牌发展状况进行调研,并按模型进行测算分析,得出商标品牌发展的内在规律。”南京理工大学知识产权学院常务副院长钱建平说,为了让指数更具指导性、针对性,商标品牌发展的内在规律总结为5个一级指标:品牌政策支持、品牌发展实效、品牌保护力度、社会协同效应、品牌发展潜力等5个指数。
“5个一级指标不仅有政策层面的支持、保护,还有企业主体角度的自我发展,基本涵盖了一个商标品牌发展的路径和需要的环境。”吴永才说,从各地指数发展情况来看,先发优势并不是高枕无忧,后来者完全可以实现弯道超越。
从全省整体来看,区域商标品牌发展现状整体良好,但是区域差异不小,镇江、泰州、宿迁品牌经济发展分别在苏南、苏中、苏北地区相对较弱。数据显示,2014年区域商标品牌发展指数排名前4位的分别是苏州、南京、无锡、南通。值得注意的是,这些地区的商标品牌发展指数与GDP排名正相关,也就是说,经济发展速度较快的地区,对商标品牌的发展保护重视程度也越高。苏州以0.8311的综合指数排位第一,遥遥领先于最后一位宿迁(指数仅为0.6238)。后5位为镇江、连云港、泰州、盐城和宿迁。“从总体来看,苏州的商标品牌发展走在全省前列。这与苏州经济发展状况密切相关,市场经济发达的地区,其经济发展就更追求市场的规范性,更注重品牌经济的推动作用。”钱建平说。
有意思的是,扬州、淮安、盐城等地区,其综合指数与GDP并不匹配,其中扬州GDP排名第八,区域商标品牌发展指数为第五,淮安的GDP排名第11位,其发展指数为第八,盐城的GDP排名第七,其发展指数则为第12位。
具体来看,在品牌政策支持指数方面,苏北地区的品牌政策支持指数较为突出,此项排名中,淮安以0.8141排名第一,徐州以0.7866排名第三,连云港以0.756排名第八。据了解,目前全省13个省辖市均设有品牌发展专门领导机构,但各地区领导机构运行情况有所差异,南通、苏州、常州和泰州机构较为活跃,南京市、淮安市经费投入较大,其他地区在相对活跃度、经费投入度上表现一般。
品牌保护力度、社会协同效应两个指数,也是从政策、社会环境方面对商标品牌的发展给予支持。其中,品牌保护力度指数主要包括商标侵权行政案件数量、商标侵权行政案件案值、移送司法的商标侵权行政案件数量、法院审理的商标案件数量和权利人品牌保护满意度。品牌保护最强的是苏州,以0.8870排名第一,南京、南通分列二三位。去年苏州商标侵权行政案件案值全省第一,具体数额比其他十二个市域加起来还要高。按照知识产权强省建设的要求,“十三五”期间,全省权利人满意度要达到80%,全社会品牌认知度超过75%,根据这一标准,目前各地方权利人品牌保护满意度、各地区社会品牌认知度均低于该目标。
在5个一级指标中,品牌发展实效指数最能给人直观感受,也最具代表性。这一指数包含的指标有国内有效注册商标数量、国际商标数量、地理标志数量、每万户市场主体拥有国内注册商标数量、驰名商标数量、江苏省著名商标数量、江苏省名牌产品数量、省重点培育与发展的国际知名品牌数量、自主品牌企业增加值占GDP比重和商标质押融资数量。其中,苏州以0.8679排名第一,排在最后一位的连云港仅为0.6094。目前各地区间差异较为明显,以国际注册商标数量来说,苏州是连云港的27倍多。全国每万户市场主体的商标拥有量超过1200件,我省无锡、苏州、南京、常州、扬州均达到或超过这一平均水平。
吴永才说,由于江苏省区域商标品牌发展指数涵盖内容全面丰富,包括了30项具体指标,为了更好地为地方商标品牌发展工作提供明确的指导性,有必要设置核心指标。因此,区域商标品牌发展指数从30个二级指标中选出了7个核心指标:品牌发展专项经费投入情况、国内有效注册商标数量、驰名商标数量、自主品牌企业增加值占GDP的比重、商标侵权行政案值、商标代理机构规模化发展水平和年度自主品牌企业增加值增长率。
为什么要设定这7个指标为核心指标?对此,省工商局商标处副处长张传博解释说,在设立核心指标时,主要遵循重要、导向和比例三个原则,将每个一级指标中最重要、权重最高的指标、最能体现一级指标内涵的指标设为核心指标,为各地开展商标品牌建设确立明确的导向。同时,指标之间也需要平衡,即核心指标个数与一级指标权重相适应。由于品牌发展实效指数是一级指标中权重最高的指标,因此将其中的三个指标设为了核心指标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08