
大数据观察:网贷人群分析
把大数据引入P2P网贷,会产生怎样的“化学反应”?关注P2P的又是什么样的人群?他们有着什么样的投资习惯?了解这些信息,你就掌握了开启P2P网贷行业的钥匙。
大数据服务提供商GEO集奥聚合近期通过数据挖掘的方式收集了2013年12月1日到31日期间北京、上海、广东、浙江、江苏5个地区429个P2P网贷网站的用户浏览数据,样本量达11906721个,分析了P2P平台上的贷款人人群和借款人人群属性、投资习惯等。
经对比分析,GEO集奥聚合得出以下结论:
特征1:陆金所网站的页面浏览量和独立访客两个指标均排名首位;
特征2:排名前三的P2P网站用户重合度较低,三三重合用户百分比仅为0.3%,表明目前P2P网站还未到互相争夺用户阶段;
特征3:用户主体为30-40岁中青年男性群体;其中商业人士居多,贷款用途多为淘宝经营;
特征4:最受P2P人群关注的投资类产品是股票,最受关注的贷款类产品是银行信贷,P2P人群与股票人群重合度最高;
特征5:P2P网站的交易量高峰在夜晚,浏览量则集中在上午和晚上;
特征6:用户的平均浏览时长近半小时,访问者对借出的关注明显高于借入;
特征7:P2P网站重视从搜索、财经类网站导流,贷款人引流词多为P2P网站品牌名称,借款人引流词中贷款类词汇占1/3;
特征8:贷款人最关注的商品是三星和苹果手机,借款人最关注服装鞋帽和华为手机;
特征9:贷款人最关注的奢侈品品牌是香奈儿,借款人最关注是迪奥;
特征10:微信是最受贷款人和借款人关注的社交平台。
特征数据解读:
特征1:陆金所目前是国内P2P网贷行业人气最高的平台。国资背景以及平安已有商誉为其聚集了越来越多的用户。可以说,陆金所是目前中国P2P网贷行业的标杆。
特征2:整个P2P网贷行业目前还处于增长期,行业整合尚未开始。随着近期越来越多的国资背景公司和互联网行业巨头开始进军P2P网贷,行业格局将会进一步改变。
特征3:使用贷款业务的人群的主要是个体经营户,而经营活动也主要通过线上渠道进行。可以看出目前网贷服务仍然存在一定的门槛:1)贷款者通常需要有一定的互联网使用技能;2)贷款者通常对于线上支付业务有一定程度体验和接受程度。因此,移动客户端支付的普及将会引入更多的网贷用户。
特征4:对股票的追捧说明了投资人对风险的承受能力。数据显示,使用P2P平台进行投资的人群对于风险的承受能力较高,追求收益的意愿较强。在股票收益低迷时期,P2P投资产品为投资者提供了比其它理财形式更高的收益率。但是,当股票市场回暖,P2P行业可能会出现流动性不足。
特征:6:对借出的较高关注度说明P2P平台用户投资需求高于借贷。
特征8:贷款人偏爱高端消费品说明贷款人消费能力较强劲,借款人消费能力较弱。
综述:
目前,P2P平台的用户总体中,有投资意愿的人群多于有借款需求的人群。这些用户有较强的投资意愿,也同时有较强的风险意识。因此,在对平台的关注对象选择时,他们倾向于关注公信力、声誉较高的品牌平台。P2P平台的投资者消费能力较强,对收益的追求倾向也较强。在股市回暖时,P2P行业的整体流动性及稳定性可能受到较大影响。此外,目前P2P平台对用户入口仍然存在一定门槛。移动支付方式的体验普及和认可度提升可能为P2P行业带来更多的用户。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04