京公网安备 11010802034615号
经营许可证编号:京B2-20210330
国家信息中心周民:解读大数据纲要
自2015年8月国务院发布《促进大数据发展行动纲要》(以下简称大数据纲要)以来,大数据如雨后竹笋般成长起来,无论是政府还是产业界人士都在关注大数据的发展。国家信息中心周民副主任前段时间在中国(廊坊)大数据产业周活动中接受了IT168记者的采访,为我们详细解读了大数据纲要及大数据发展前景。
开放、创新、安全 大数据三大任务
通过大数据将推动政府管理理念和社会治理模式进步,加快建设与当前社会主义市场经济体制和中国特色社会主义事业发展相适应的法治型政府、创新政府、廉洁型政府、服务型政府,逐步实现政府治理能力现代化。
周民指出,大数据纲要部署有三方面主要任务。一要加快政府数据开放共享,推动资源整合,提升治理能力。大力推动政府部门数据共享,稳步推动公共数据资源开放,统筹规划大数据基础设施建设,支持宏观调控科学化,推动政府治理精准化,推进商事服务便捷化,促进安全保障高效化,加快民生服务普惠化。
在大数据行动纲要发布后,十八届五中全大数据又有重要的论述,在创新发展方面,要实施国家大数据战略。在这样的发展背景下,不论是政府也好,还是从事信息化的企业也好都要转变观念,用大数据思维提升国家治理能力。国家大数据战略其中一个重点就是要把政府掌握的数据共享和开放。
政府在履职的过程中形成了许多数据资源,虽然从数据量的角度来看它相比于社会经济生活中产生的数据相对较少,但政府大数据它的价值密度比社会数据资源价值密度高出许多。促进大数据的发展首先要促进政府大数据的开放、公开、共享。
二要推动产业创新发展,培育新兴业态,助力经济转型。发展大数据在工业、新兴产业、农业农村等行业领域应用,推动大数据发展与科研创新有机结合,推进基础研究和核心技术攻关,形成大数据产品体系,完善大数据产业链。
在产业方面要用创新发展的思路来推动大数据产业的发展。大数据纲要中同时提出了用创新发展带动整个大数据产业发展。从产业链角度来看,大数据包括了采集、处理、分析,以及交易、应用等多个环节,在这个产业链中底层需要基础支撑比如硬件、云计算技术、计算资源存储、数据挖掘分析工具到后续的支撑应用以及国际许多先进的技术。在这方面,我国还远未实现安全可控,关键核心技术还要依靠国外的产品,所以产业方面需要创新发展,加大对大数据关键技术研发、产业发展和人才培养力度,深化大数据应用,推动我国大数据产业健康发展。

▲国家信息中心周民副主任
三要强化安全保障,提高管理水平,促进健康发展。健全大数据安全保障体系,强化安全支撑。
大数据一旦集中起来,数据量将非常巨大,首先考虑的就是数据安全问题。一是从脱敏、去隐私化做好安全保障,二是要做好数据安全防护。
国家信息中心全力参与大数据战略落地
随着大数据纲要的发布,国家信息中心在大数据方面也在积极参与相关工作。比如大数据行动纲要指出在2018年要建成国家统一数据开放平台,其中中央层面国家统一数据共享与交换平台是由国家信息中心承建,目前该平台雏形已经建立,连接了几十个部委,这些部委都可以依托这个共享平台,实现自己的业务和其它业务的数据共享与交换。目前,已有多个重要信息系统在利用这个平台。未来随着信息化建设的不断深入,数据共享与交换平台将发挥出更重要的作用。
从产业的角度来看,国家信息中心采取了事企合作的方式,利用社会化的资源与技术,把产业的先进技术应用到系统建设中来。同时通过与廊坊市的积极合作,共同开展大数据等方面的应用与研究,将为今后政府数据进一步公开提供基础,并能够让社会企业利用数据资源开展增值服务。
虽然我们可以看到大数据的大好趋势以及发展前景,但大数据的广泛应用仍然存在一定的挑战。对于此,周民认为,大数据共享在不同的部门认知和理解需要一个过程,现在虽还不能做到所有部委都把数据进行公开、共享,但从近几年发展趋势来看,已经有部分部委把数据拿出来做共享,相信随着时间推移,会有越来越多的部委将数据进行共享,以更好的服务社会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08