京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据可视化的思维
在数据领域我们主张用数据可视化思维去探索大数据的价值,我们知道2013年是中国大数据的元年,任何一家企业不把自己的产品业务和大数据联系在一起,就觉得是非常落伍的,但是真实的情况是不是这样的?目前火爆的市场概念和火爆的大数据想法并没有换来对大数据清醒的认识,相反是对大数据的困惑,我们的大数据如何落地到我们行业里面去,如何我们和产品结合起来,如何为我们客户创造价值,这些东西都是很关键的因素,其实我们知道尤其在为客户创造价值这一块,我们认为只有两个点才是真正帮助客户价值,一帮助客户赚钱,二帮助客户省钱,如果我们一项技术不要说它是不是大数据,它即便不是大数据的话,如果做不到这两点的话,它的未来成长性也是非常弱的。这不得不让我们重新思考大数据整个产业链发展,我们可以看到国外的大数据产业链其实是从数据的采集、处理、分析、可视化,最后出来一个产品交付给我们用户。
目前国内大部分用户和产品其实到了分析这个环节就会得出一个报告或者是一个结论,或者是一个软件等等交付给我们用户。我们换位思考一下,其实如果您是一位企业老总需要您花几百万甚至几千万购买一个报告或者是购买一个软件您是如何来思考这件事情,我们在想如何让客户心动,如何击中客户的重点,迅速让技术落地到行业当中去,让技术人员价值让业务人员或者让领导,或者让老板,或者让懂业务的这群人如何去理解他们,这个是数据可视化最关键的价值点我举例,我们某产品给某政府做的舆情系统,传统的舆情系统主要是帮客户做预警信息,得出一个信息结点,我们可以判断一个路径结点,比如什么地方又出现了一个什么样的状态,但实际上这个状态没有办法帮助我们客户去判断一个东西,判断他到底这个信息量有多大,是群体性事件,还是偶发性事件,是概率性事件还是大范围事件,所以我们帮助客户去分析这个信息需不需要处理,处理到什么样的阶段,这些都是值得我们需要重视的阶段,所以在我们这样一个产品上,需要帮助我们的技术连接到客户端里面去,让我们的决策层能够知道里面最核心的结点。
所以我们认为其实这是一个数据新闻的作品,在座的今天有很多媒体,我本人也是媒体出身,以前是新京报的,在媒体行业叫做数据新闻,今天欧美所有的一线媒体已经大范围地用数据新闻来产生自己的核心价值,已经不再用很多的文字了。所以我们从这样一个很简单的三公消费数据可视化里面,就可以看出来其实我们大部分的数据新闻已经改变了文字的作用。我今天想说的并不是在数据新闻上的发展,而是在于数据可视化如何帮助我们人,或者是我们用户更好地去理解它、更快速地认知它。国家工商总局为什么会在三公消费里面用这么多的钱,包括它的结算和预算这些东西都是值得我们看一看。
我们知道这旁边有一个工具生产出来的趋势图,其实我们知道数据的模型我们过去只有这种简单的二维趋势图或者是柱状图或者饼状图等等,这些没有准确帮助我们做出分析,因为大数据是做预测,并不是得到分析,我们今天得到所有的数据结果都是根据过去的经验得出来的,我们必须要重新定义它的横坐标、竖坐标,重新如何打颜色,如何去判断,所以我们有了3D,重新用这样一个图去定义什么是横坐标、竖坐标,颜色判断,重新定义这样大数据的价值在里面挖掘的这样一些点和空间是在什么地方。比如我们知道中间的一些结点,包括如果一个趋势图的话其实体现不了里面的距离等等,这样一个新的唯度。现在至少放到7到12个纬度以上的数据进去,这样我们知道数据和数据之间的关联和态势,因为我们知道其实数据是比较枯燥的,为什么我们讲数据分析师非常重要的,就是因为数据没有办法让大多数理解,我们如何快速地去感知数据之间的联系,必须依靠视觉的手段和视觉的感知能力去找到大数据和大数据之间的关联性和可能性,才能发现和挖掘,才能谈得上未来有可能性的结点。
其实今天比较匆忙,数据这方面也没办法太多地展开,我们海云数据目前是中国大数据这块的领导者,是微软和更多的这种用户的合作伙伴,都是他们选择了我。所以我们其实走到了今天非常感谢这些合作伙伴,因为他们让我们更加落地,更加懂客户,知道我们行业里需要什么样的东西,用数据可视化做出什么样的内容,这是我们更加关心的结点。
最后一个小小的分享,其实我们知道刚刚我说过这句话大数据的价值是用于预测的,而不是总结的,我们今天不得已而为之需要把我们过去可能信息孤岛的事情都还没解决,可能我们还谈不上用一些很酷的很舒服的分析能力得到未来的商业价值,但是这天一定会到来的,我们需要解决的是大数据的这种感知能力,所以我们希望用我们这种大数据可视化思维能力去解决这个问题,去探索这个问题,去发现这个问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15