京公网安备 11010802034615号
经营许可证编号:京B2-20210330
让大数据为互联网保险保驾护航
随着国家经济创新的不断深入及个人财富增值的需求,保险作为一种综合理财行为逐渐成为消费者关注的重点,在“互联网+、大数据”的冲击下,作为传统的金融行业,中国的保险销售模式正在酝酿新的变革。
为用户塑造合适的购买场景
一个西装革履的保险经纪人顶着烈日、口干舌燥地描述着生活中可能遇到的各种意外,以及购买保险产品所带来的保障和额外收益,但是最终得到的往往是用户的果断拒绝,甚至是白眼和冷言冷语,运营成本居高不下,成功率却很低。
上面就是传统保险行业推广中常见的场景,并不是客户不通人情,而是保险经纪人没有了解潜在客户的需求,没有针对性地为客户解决个性化问题,没有用简洁易懂的话语和恰当的方式与用户进行沟通。如果去问传统保险行业的销售人员,保险销售最关键的问题是什么?想必得到的答案会非常统一:为用户塑造合适的购买场景。
这个问题的解决对于传统保险行业来说的确是一个很大的挑战,但是互联网保险的兴起,可以让这个问题变得简单。
众诺平台助力精准营销
随着发展趋势的日益明显,面对这个机遇众多的领域,越来越多的互联网保险平台如雨后春笋般兴起,其中,依托于亚信数据保险金融业解决方案部,正在开发中的众诺平台,显现出了独有的竞争力。亚信资深技术专家吴岸城先生说:“众诺设计之初,就打算结合公司已积累的丰富的渠道商和保险公司资源,做一个线上运营平台,与众不同的是众诺将依托亚信数据的技术和解决方案资源为保险公司做出更加精准的营销,同时将互联网思维进行到底,关注用户个性化需求,以用户为主导,创新模式。”
亚信过去20年里以致力于为全球信息服务运营商提供高效的IT解决方案和服务为己任,帮助运营商实现互联网化,积累了大量的数据资源和扎实的技术基础,再加上亚信数据雄厚的大数据加工和处理的技术优势,相信众诺平台将会助力保险公司进行更加精准的产品营销,从用户需求出发,塑造合适的用户场景,真正实现个性化服务。
自主研发为保险业定制
对于大数据在保险行业基本的应用范围,吴岸城先生认为:现今我们所看到的各种传感器、定位装置都是一种可以将现实事物或行为具象化的设备,通过多种多样的设备,将数据收集上来,然后进行处理分析,我们就能发现不同用户的个性化需求,对客户进行精准营销,针对性服务,最后可以通过数据分析每一个人的行为风险度,做出预测,制定出更合理的保费,让保险公司更加有效地规避风险,并对欺诈行为进行鉴别,分析出什么时候,什么地方最容易产生欺诈,提前防卫,做好反欺诈的相关工作,这对于保险行业的良性发展是非常必要的。
在实现大数据应用的技术层面,深度学习和算法的优化是必不可少的。当2006年DBN优化算法做好之后,许多公司开始了深度学习方面的研究。而这些研究成果则会直接体现在智能客服的产品之中。微软实验室的小冰和苹果的Siri都受到业界的好评,除此之外,一些新兴的互联网公司也纷纷涉足智能客服业务。
在看似已经成熟的市场环境下,亚信数据依然选择了自主研发。吴岸城先生告诉记者:“其他公司推出的一些通用性产品,虽然在生活领域可以做的很好,但到了保险、金融领域,当涉及到一些核心业务,比如承保、理赔、投保的时候,就显得力不从心,因此我觉得在深入了解保险行业的发展现状和趋势之后,针对具体的情况,自己去开发这个东西更好一些。”
技术积累保障数据安全
大数据本身固有的特征可以用4个“V”来概括——Volume(数据体量巨大)、Variety(数据类型繁多)、Value(价值密度低)、 Velocity(处理速度快)。亚信作为一家全运营商业务的公司,在数据处理方面有着得天独厚的优势。举个例子来说,运营商每天要收集用户的上网流量,进行分析,数据量大概是50PB,这个级别是现今所有数据库都做不到的,所以它的底层采用了Hadoop去做,上层运用流式计算,这些数据的存储和分析都是由亚信参与规划和建设的,在其中积累了丰富的经验。
吴岸城先生说道:“大数据处理中涉及到分布式和并行计算,亚信在运营商层面已经有很好的应用和实践了。包括现在流行的OpenStack和Docker,亚信有社区的Committer,技术团队会非常快速的融入开源社区,将新技术迅速融入到业务中去。”
大数据给企业带来价值的同时,也会引入新的安全威胁。随着支付宝、携程等大公司数据安全事故频发,企业在大数据应用前首先要考虑数据安全威胁。
吴岸城先生认为:在这方面,亚信有一套成熟的产品线进行支撑,虽然内部称它为BI,实际上它除了BI之外,还包括前端ETL抽取、分布式等,此外我们就OpenStack组件也做了一些源码级的修改,让它更好地融入到整个安全体系当中去,在云上面构建一个安全的防护体系。
数据隐私是数据安全的一个子集,运营商对于数据隐私的要求同样非常严格,因此亚信在原来的业务层面有一个4A的管理系统,后面配有堡垒机。就像吴岸城先生介绍所说:“开始我们就要做一些主动防御的事,为数据安全保驾护航,将风险降低到最小。”
结语
随着国家层面对于保险行业的关注和人们生活水平的提高,保险业的繁荣已经是板上钉钉的事情,而IT技术必然会伴随其未来的整个发展过程,成为其最大的助力和关键所在。当“互联网+”的概念日益深入,BAT相继布局互联网金融,市场上早已波涛汹涌。相比于金融行业的其他分支,保险行业就像一条暗河,看似落花流水平常心,却早已风雨无晴。被誉为“中国互联网建筑师”的亚信,也早已深耕于大数据行业,成立亚信数据,力求通过大数据为“互联网+保险”保驾护航,让互联网保险满足越来越多客户的个性化需求,越来越任性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11