京公网安备 11010802034615号
经营许可证编号:京B2-20210330
非结构化数据分析,让数据带动生产力
近年来“大数据”及“数据分析”的概念火爆异常,然面对大数据分析时,国内外却有着不小的差距,国内企业仍以结构化数据分析为主,而美国的很多企业却早已向非结构化数据迈进。
非结构化数据分析目前属于非常前沿的技术,需求量很大,但是在市场上几乎是一片空白,Derek Wang(汪晓宇博士--美国数据分析科学家、前北卡大学夏洛特分校助理敎授、夏洛特视觉中心主任)与其团队看到这个领域的巨大潜力,并且把握住了机会,悉心研发的Taste新型非结构化数据分析平台,在短短的四五个月的时间里成功拿下了几十家中小企业的合作,一些大厂商同样抛出了橄榄枝,其中包括6家《福布斯》全球500强的公司以及多家美国主流企业。
Taste Analytics这款软件在美国为何如此抢手?如何走进中国市场?就相关问题,我们对美国非结构化数据分析领军企业Taste Analytics创始人Derek Wang(汪晓宇)博士进行了采访。
美国率先实现非结构化数据分析
Derek Wang在介绍Taste Analytics这款产品时说道:“The Taste Signals Platform是一套可用于每一个企业日常经营的实时的智能数据分析平台,其最独特的地方在于强大的非结构化数据的分析能力,目前其不仅可以分析传统的结构化数据,也可以分析包括中文在内的12种文字、语音等非结构化数据。Taste Analytics可以对数据、文字以及语音进行实时分析,结合了舆情分析、语义分析、人机互动三重机制,目前,针对文档类的筛选分析效果明显,在未来的十二个月之内,图像处理包括视频分析的非结构化部分也推动到市场上。这款产品可以可视化分析结果,操作界面也非常简单,母亲辈的人都会使用,在美国这边的客户一般五到十分钟就可以轻松掌握”,在问道Taste Analytics 的应用范围及场景时,Derek Wang 给出了这样的回答:“ Taste Analytics是一个分析平台,最大的市场是中小企业,但是对于一些大企业来说,同样适用, 例如亚马逊,他们的核心业务不是做数据分析,对外提供的产品也并非这方面,然而在美国我们一直保持着合作。对于应用场景而言,Taste Analytics的服务适用于各种非结构化数据分析场景,只要有聊天记录、对话记录和邮件记录,就可以和数据源直接对接,非常易用而且安全。“在谈到数据安全问题时,我们不免有些疑惑,因为之前Derek Wang谈到:“基于云平台,让客户可以了解到进行数据分析”,但是实际上很多客户在应用云时难免会担心数据泄露,影响安全,毕竟都是日常交易或者是核心数据,基于这点,Derek Wang给出了这样的回答:“我们非常重视安全,基于不同企业类型的考虑,会有两套不同的方案,对于大企业来讲,如金融企业或者IT商,我们可以直接部署到企业内部的安全平台上,所有的云平台都将在企业私有云或者是机房内部进行部署,对于中小企业或者个人来说,我们有一套安全加密云,我们所有的服务器跟最高级安全加密模式是匹配的,最大程度化的保证了用户数据不被泄露。”那么对于数据的准确性是如何判断的?类似于恶意评价的筛选如何做到呢?“我们系统里面自带智能算法,可以剥离出哪些言论来自机器,哪些言论是垃圾,通过筛选让核心的语意内容展示出来,智能屏蔽掉恶意或者说是垃圾信息”。Derek Wang这样答道。
国内市场有望填补非结构化数据分析空白
目前,国内的企业在进行大数据分析时,仍以分析结构化数据为主,而对于内涵丰富的非结构化数据,市面上并没有有效的工具进行分析。考虑到中国市场和美国市场不太一样,这款产品如何本土化走进生活,进入中国市场后的合作伙伴如何选择?”我跟国内的合作模式有三种,渠道、分销和整合,我们在进入中国市场时,不会以我们为本土方向,而是会选择与国内一些比较知名的大数据公司进行合作,把产品结合到他们已有的大数据产品平台中,把数据分析的实用性带给中国广大企业级的客户应用,让客户从中受益,同时,我们也会给中国企业提供非常本地化的服务。从大家最关心的安全角度讲,如果是企业内部的私有数据,我们可以把平台放到企业防火墙内或者内部云里;如果是外部数据,我们的爬虫会自动抓取这些数据,”Derek Wang博士说,“我们一直希望的就是,让企业用最小的付出,得到最好的结果。”
写在最后:Taste Analytics的愿景是“用数据带动生产力”以及“将每个人都变为数据科学家”。其在美国的成功创建,与美国整体市场环境有着很大关系,包括欧洲市场,目前来讲对B2B的软件平台模式都比较信赖,在相对完整的行业体系下,市场活跃度以及成熟度也比较高,那么对于目前的中国市场而言,要想成功介入,势必还要做很多功课,在如何本土化改良以及合作伙伴的选择上,还需考虑周全,Derek Wang预计此产品在明年年初有望进入中国市场,目前还在进行市场调研以及产品本土化的准备工作,究竟效果如何,能否帮助中国企业走出数据分析的困境?让我们拭目以待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17