京公网安备 11010802034615号
经营许可证编号:京B2-20210330
非结构化数据分析,让数据带动生产力
近年来“大数据”及“数据分析”的概念火爆异常,然面对大数据分析时,国内外却有着不小的差距,国内企业仍以结构化数据分析为主,而美国的很多企业却早已向非结构化数据迈进。
非结构化数据分析目前属于非常前沿的技术,需求量很大,但是在市场上几乎是一片空白,Derek Wang(汪晓宇博士--美国数据分析科学家、前北卡大学夏洛特分校助理敎授、夏洛特视觉中心主任)与其团队看到这个领域的巨大潜力,并且把握住了机会,悉心研发的Taste新型非结构化数据分析平台,在短短的四五个月的时间里成功拿下了几十家中小企业的合作,一些大厂商同样抛出了橄榄枝,其中包括6家《福布斯》全球500强的公司以及多家美国主流企业。
Taste Analytics这款软件在美国为何如此抢手?如何走进中国市场?就相关问题,我们对美国非结构化数据分析领军企业Taste Analytics创始人Derek Wang(汪晓宇)博士进行了采访。
美国率先实现非结构化数据分析
Derek Wang在介绍Taste Analytics这款产品时说道:“The Taste Signals Platform是一套可用于每一个企业日常经营的实时的智能数据分析平台,其最独特的地方在于强大的非结构化数据的分析能力,目前其不仅可以分析传统的结构化数据,也可以分析包括中文在内的12种文字、语音等非结构化数据。Taste Analytics可以对数据、文字以及语音进行实时分析,结合了舆情分析、语义分析、人机互动三重机制,目前,针对文档类的筛选分析效果明显,在未来的十二个月之内,图像处理包括视频分析的非结构化部分也推动到市场上。这款产品可以可视化分析结果,操作界面也非常简单,母亲辈的人都会使用,在美国这边的客户一般五到十分钟就可以轻松掌握”,在问道Taste Analytics 的应用范围及场景时,Derek Wang 给出了这样的回答:“ Taste Analytics是一个分析平台,最大的市场是中小企业,但是对于一些大企业来说,同样适用, 例如亚马逊,他们的核心业务不是做数据分析,对外提供的产品也并非这方面,然而在美国我们一直保持着合作。对于应用场景而言,Taste Analytics的服务适用于各种非结构化数据分析场景,只要有聊天记录、对话记录和邮件记录,就可以和数据源直接对接,非常易用而且安全。“在谈到数据安全问题时,我们不免有些疑惑,因为之前Derek Wang谈到:“基于云平台,让客户可以了解到进行数据分析”,但是实际上很多客户在应用云时难免会担心数据泄露,影响安全,毕竟都是日常交易或者是核心数据,基于这点,Derek Wang给出了这样的回答:“我们非常重视安全,基于不同企业类型的考虑,会有两套不同的方案,对于大企业来讲,如金融企业或者IT商,我们可以直接部署到企业内部的安全平台上,所有的云平台都将在企业私有云或者是机房内部进行部署,对于中小企业或者个人来说,我们有一套安全加密云,我们所有的服务器跟最高级安全加密模式是匹配的,最大程度化的保证了用户数据不被泄露。”那么对于数据的准确性是如何判断的?类似于恶意评价的筛选如何做到呢?“我们系统里面自带智能算法,可以剥离出哪些言论来自机器,哪些言论是垃圾,通过筛选让核心的语意内容展示出来,智能屏蔽掉恶意或者说是垃圾信息”。Derek Wang这样答道。
国内市场有望填补非结构化数据分析空白
目前,国内的企业在进行大数据分析时,仍以分析结构化数据为主,而对于内涵丰富的非结构化数据,市面上并没有有效的工具进行分析。考虑到中国市场和美国市场不太一样,这款产品如何本土化走进生活,进入中国市场后的合作伙伴如何选择?”我跟国内的合作模式有三种,渠道、分销和整合,我们在进入中国市场时,不会以我们为本土方向,而是会选择与国内一些比较知名的大数据公司进行合作,把产品结合到他们已有的大数据产品平台中,把数据分析的实用性带给中国广大企业级的客户应用,让客户从中受益,同时,我们也会给中国企业提供非常本地化的服务。从大家最关心的安全角度讲,如果是企业内部的私有数据,我们可以把平台放到企业防火墙内或者内部云里;如果是外部数据,我们的爬虫会自动抓取这些数据,”Derek Wang博士说,“我们一直希望的就是,让企业用最小的付出,得到最好的结果。”
写在最后:Taste Analytics的愿景是“用数据带动生产力”以及“将每个人都变为数据科学家”。其在美国的成功创建,与美国整体市场环境有着很大关系,包括欧洲市场,目前来讲对B2B的软件平台模式都比较信赖,在相对完整的行业体系下,市场活跃度以及成熟度也比较高,那么对于目前的中国市场而言,要想成功介入,势必还要做很多功课,在如何本土化改良以及合作伙伴的选择上,还需考虑周全,Derek Wang预计此产品在明年年初有望进入中国市场,目前还在进行市场调研以及产品本土化的准备工作,究竟效果如何,能否帮助中国企业走出数据分析的困境?让我们拭目以待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29