
非结构化数据分析,让数据带动生产力
近年来“大数据”及“数据分析”的概念火爆异常,然面对大数据分析时,国内外却有着不小的差距,国内企业仍以结构化数据分析为主,而美国的很多企业却早已向非结构化数据迈进。
非结构化数据分析目前属于非常前沿的技术,需求量很大,但是在市场上几乎是一片空白,Derek Wang(汪晓宇博士--美国数据分析科学家、前北卡大学夏洛特分校助理敎授、夏洛特视觉中心主任)与其团队看到这个领域的巨大潜力,并且把握住了机会,悉心研发的Taste新型非结构化数据分析平台,在短短的四五个月的时间里成功拿下了几十家中小企业的合作,一些大厂商同样抛出了橄榄枝,其中包括6家《福布斯》全球500强的公司以及多家美国主流企业。
Taste Analytics这款软件在美国为何如此抢手?如何走进中国市场?就相关问题,我们对美国非结构化数据分析领军企业Taste Analytics创始人Derek Wang(汪晓宇)博士进行了采访。
美国率先实现非结构化数据分析
Derek Wang在介绍Taste Analytics这款产品时说道:“The Taste Signals Platform是一套可用于每一个企业日常经营的实时的智能数据分析平台,其最独特的地方在于强大的非结构化数据的分析能力,目前其不仅可以分析传统的结构化数据,也可以分析包括中文在内的12种文字、语音等非结构化数据。Taste Analytics可以对数据、文字以及语音进行实时分析,结合了舆情分析、语义分析、人机互动三重机制,目前,针对文档类的筛选分析效果明显,在未来的十二个月之内,图像处理包括视频分析的非结构化部分也推动到市场上。这款产品可以可视化分析结果,操作界面也非常简单,母亲辈的人都会使用,在美国这边的客户一般五到十分钟就可以轻松掌握”,在问道Taste Analytics 的应用范围及场景时,Derek Wang 给出了这样的回答:“ Taste Analytics是一个分析平台,最大的市场是中小企业,但是对于一些大企业来说,同样适用, 例如亚马逊,他们的核心业务不是做数据分析,对外提供的产品也并非这方面,然而在美国我们一直保持着合作。对于应用场景而言,Taste Analytics的服务适用于各种非结构化数据分析场景,只要有聊天记录、对话记录和邮件记录,就可以和数据源直接对接,非常易用而且安全。“在谈到数据安全问题时,我们不免有些疑惑,因为之前Derek Wang谈到:“基于云平台,让客户可以了解到进行数据分析”,但是实际上很多客户在应用云时难免会担心数据泄露,影响安全,毕竟都是日常交易或者是核心数据,基于这点,Derek Wang给出了这样的回答:“我们非常重视安全,基于不同企业类型的考虑,会有两套不同的方案,对于大企业来讲,如金融企业或者IT商,我们可以直接部署到企业内部的安全平台上,所有的云平台都将在企业私有云或者是机房内部进行部署,对于中小企业或者个人来说,我们有一套安全加密云,我们所有的服务器跟最高级安全加密模式是匹配的,最大程度化的保证了用户数据不被泄露。”那么对于数据的准确性是如何判断的?类似于恶意评价的筛选如何做到呢?“我们系统里面自带智能算法,可以剥离出哪些言论来自机器,哪些言论是垃圾,通过筛选让核心的语意内容展示出来,智能屏蔽掉恶意或者说是垃圾信息”。Derek Wang这样答道。
国内市场有望填补非结构化数据分析空白
目前,国内的企业在进行大数据分析时,仍以分析结构化数据为主,而对于内涵丰富的非结构化数据,市面上并没有有效的工具进行分析。考虑到中国市场和美国市场不太一样,这款产品如何本土化走进生活,进入中国市场后的合作伙伴如何选择?”我跟国内的合作模式有三种,渠道、分销和整合,我们在进入中国市场时,不会以我们为本土方向,而是会选择与国内一些比较知名的大数据公司进行合作,把产品结合到他们已有的大数据产品平台中,把数据分析的实用性带给中国广大企业级的客户应用,让客户从中受益,同时,我们也会给中国企业提供非常本地化的服务。从大家最关心的安全角度讲,如果是企业内部的私有数据,我们可以把平台放到企业防火墙内或者内部云里;如果是外部数据,我们的爬虫会自动抓取这些数据,”Derek Wang博士说,“我们一直希望的就是,让企业用最小的付出,得到最好的结果。”
写在最后:Taste Analytics的愿景是“用数据带动生产力”以及“将每个人都变为数据科学家”。其在美国的成功创建,与美国整体市场环境有着很大关系,包括欧洲市场,目前来讲对B2B的软件平台模式都比较信赖,在相对完整的行业体系下,市场活跃度以及成熟度也比较高,那么对于目前的中国市场而言,要想成功介入,势必还要做很多功课,在如何本土化改良以及合作伙伴的选择上,还需考虑周全,Derek Wang预计此产品在明年年初有望进入中国市场,目前还在进行市场调研以及产品本土化的准备工作,究竟效果如何,能否帮助中国企业走出数据分析的困境?让我们拭目以待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01