京公网安备 11010802034615号
经营许可证编号:京B2-20210330
科技大数据 哲学新思维
“数字生活”中,我们接收更多数据,也制造了更多数据。大家都在思考:大数据究竟会对我们的生活产生何种影响?
大数据,通常用来形容人们创造的大量结构化和非结构化数据,其特点是4“V”,即,数据体量巨大;类型繁多,如网络日志、视频、图片、地理位置信息等等;处理速度快;蕴含着巨大的价值潜力。这种变化不只是科学上的,“大数据浪潮”还引发了思维模式和发展模式的改变——这让哲学家们认识到:必须认识其数理哲学基础。
对数据的认识史就是人类的发展史
人类的生存、发展方式可以归结为:获取信息,处理信息,而这就是智力。智力的进步,归根结底就是信息技术的进步。
人类历史上经历过三次信息革命:语言的创造——文字的创造——电信通讯的创造。
语言让人认识世界,建立相互关系;但其限制和缺点是无法突破个体的时空界限。文字的出现实现了人类思想的远距离和世代相袭传递,人类联合因此扩大;它虽然突破了空间上的限制,但需要耗费太长的时间。电信通讯的创造突破了空间的限制,为电子计算机与互联网创造奠定了基础。
电子计算机与互联网的创造,是一次伟大而空前的大综合,其特点是:所有信息全部归结为数据表达形式——0和1。只要有了0和1,加上逻辑关系,就可以构成全部世界。而世界本来就是这样构成的,已经出现的读脑机、脑电波指挥的电脑、智能机器人和人脑插入的芯片等等,都说明大脑的认知方式与世界事物同构。
大数据的出现促使我们认识到,人类的认识和实践,就是一部数据搜索、处理、挖掘和创新的历史。大数据方法揭示了因果关系是常规性的,终极的关系应从事物之间的相关性、同构性中寻找。数据反映的是具有同构关系的两个序列的关系信息,一个对象的运动轨迹,通过另一个序列的载体编码来表达。认识者获得的不是对象本身的绝对映像,而是离开了对象,从对象中抽象出来的、关于对象运动轨迹的数据。从这一角度看,同构关系是大数据的数理哲学基础。
人工智能可能超越人类
依据对象之间数据关系来认识世界,这一方法可靠吗?以往人类在对自己认识能力的反思中,已经多次提出疑议。人类每一次宣告自己是绝对真理的全称判断,如“所有的天鹅都是白的”,总是被一个小小“黑天鹅”单个事件推翻。“黑天鹅”的存在寓意着不可预测的重大稀有事件,它在意料之外,却又改变一切。因此,不能把科学知识看做是对客观世界的终极反映,它只是人们用理性构建的认识对象的模型。
大数据更像是一种连续不断的论证和数据流。这使让人们意识到,知识永远不会被完全确定,永远不会终止。
大数据的出现或许让人工智能超越人类成为可能。在图灵测试中,通过测试的机器人是否真的有自己的思想?反对者认为“智能和思想是两回事”。但是,如果在图灵测试中换上小孩,那么问题变成:对于刚出生的小孩,智能从什么时候开始?实验证明:小孩的自我意识始于大量的条件反射刺激(巴甫洛夫条件反射),仅仅是无数次的重复刺激成为坚定的信念基础,以至于形成信仰,相信这是不证自明的公理。事实上,大数据已经说明:思维的模型与世界的模型的同构关系已经真实地被把握了。
根据大数据的同构关系,我们将重新定义知识:人的知识也是一个有限量。从这个定义出发,人工智能可以超越人类——只要人工智能是动态的、可以发展的,就可以学习并超过人类。具有自我学习能力的机器人可以超过关键的“奇点”,只要通过证实的概率增加,给人工智能一个信仰或公理,人工智能技术将可以超越其制造者——人类本身。
将带来的发展模式革命
知识是不断递增的。摩尔定律揭示了大数据增长的速度。这是一场革命,是一场改变我们的思维、决策方式和发展方式的新的科学技术革命和产业革命,是一场影响世界和人类文明发展的革命。
与以往科技革命和工业革命相比,大数据的冲击力有三方面:
一是以无限增长突破有限增长。传统经济社会发展方式是有限的,因为物资财富和资产是有限的,是会枯竭的。例如现在使用煤,仅供开采160年,使用石油,仅供40年。但是大数据的增长却是源源不断的、递增的、无限的。
二是以效益递增突破效益递减。传统社会发展方式是高成本、低效益的,效益递减的。但是大数据时代的发展方式却是低成本、高效率、快速度的,效益是递增的。
三是和谐共赢发展突破了对立的、矛盾的发展。传统的发展是零和博弈似的、马太效应的:你有我就没有,你多我就少,富者越富穷者越穷。从某种程度上导致了人们互相争吵,世界不得安宁。现在,大数据时代的发展却是和谐的、合作共赢的。因为数据财富和资产可以复制、递增、共享。当然,关键还要看人的素质,因此要发展科教事业,提高人们素质。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20