京公网安备 11010802034615号
经营许可证编号:京B2-20210330
科技大数据 哲学新思维
“数字生活”中,我们接收更多数据,也制造了更多数据。大家都在思考:大数据究竟会对我们的生活产生何种影响?
大数据,通常用来形容人们创造的大量结构化和非结构化数据,其特点是4“V”,即,数据体量巨大;类型繁多,如网络日志、视频、图片、地理位置信息等等;处理速度快;蕴含着巨大的价值潜力。这种变化不只是科学上的,“大数据浪潮”还引发了思维模式和发展模式的改变——这让哲学家们认识到:必须认识其数理哲学基础。
对数据的认识史就是人类的发展史
人类的生存、发展方式可以归结为:获取信息,处理信息,而这就是智力。智力的进步,归根结底就是信息技术的进步。
人类历史上经历过三次信息革命:语言的创造——文字的创造——电信通讯的创造。
语言让人认识世界,建立相互关系;但其限制和缺点是无法突破个体的时空界限。文字的出现实现了人类思想的远距离和世代相袭传递,人类联合因此扩大;它虽然突破了空间上的限制,但需要耗费太长的时间。电信通讯的创造突破了空间的限制,为电子计算机与互联网创造奠定了基础。
电子计算机与互联网的创造,是一次伟大而空前的大综合,其特点是:所有信息全部归结为数据表达形式——0和1。只要有了0和1,加上逻辑关系,就可以构成全部世界。而世界本来就是这样构成的,已经出现的读脑机、脑电波指挥的电脑、智能机器人和人脑插入的芯片等等,都说明大脑的认知方式与世界事物同构。
大数据的出现促使我们认识到,人类的认识和实践,就是一部数据搜索、处理、挖掘和创新的历史。大数据方法揭示了因果关系是常规性的,终极的关系应从事物之间的相关性、同构性中寻找。数据反映的是具有同构关系的两个序列的关系信息,一个对象的运动轨迹,通过另一个序列的载体编码来表达。认识者获得的不是对象本身的绝对映像,而是离开了对象,从对象中抽象出来的、关于对象运动轨迹的数据。从这一角度看,同构关系是大数据的数理哲学基础。
人工智能可能超越人类
依据对象之间数据关系来认识世界,这一方法可靠吗?以往人类在对自己认识能力的反思中,已经多次提出疑议。人类每一次宣告自己是绝对真理的全称判断,如“所有的天鹅都是白的”,总是被一个小小“黑天鹅”单个事件推翻。“黑天鹅”的存在寓意着不可预测的重大稀有事件,它在意料之外,却又改变一切。因此,不能把科学知识看做是对客观世界的终极反映,它只是人们用理性构建的认识对象的模型。
大数据更像是一种连续不断的论证和数据流。这使让人们意识到,知识永远不会被完全确定,永远不会终止。
大数据的出现或许让人工智能超越人类成为可能。在图灵测试中,通过测试的机器人是否真的有自己的思想?反对者认为“智能和思想是两回事”。但是,如果在图灵测试中换上小孩,那么问题变成:对于刚出生的小孩,智能从什么时候开始?实验证明:小孩的自我意识始于大量的条件反射刺激(巴甫洛夫条件反射),仅仅是无数次的重复刺激成为坚定的信念基础,以至于形成信仰,相信这是不证自明的公理。事实上,大数据已经说明:思维的模型与世界的模型的同构关系已经真实地被把握了。
根据大数据的同构关系,我们将重新定义知识:人的知识也是一个有限量。从这个定义出发,人工智能可以超越人类——只要人工智能是动态的、可以发展的,就可以学习并超过人类。具有自我学习能力的机器人可以超过关键的“奇点”,只要通过证实的概率增加,给人工智能一个信仰或公理,人工智能技术将可以超越其制造者——人类本身。
将带来的发展模式革命
知识是不断递增的。摩尔定律揭示了大数据增长的速度。这是一场革命,是一场改变我们的思维、决策方式和发展方式的新的科学技术革命和产业革命,是一场影响世界和人类文明发展的革命。
与以往科技革命和工业革命相比,大数据的冲击力有三方面:
一是以无限增长突破有限增长。传统经济社会发展方式是有限的,因为物资财富和资产是有限的,是会枯竭的。例如现在使用煤,仅供开采160年,使用石油,仅供40年。但是大数据的增长却是源源不断的、递增的、无限的。
二是以效益递增突破效益递减。传统社会发展方式是高成本、低效益的,效益递减的。但是大数据时代的发展方式却是低成本、高效率、快速度的,效益是递增的。
三是和谐共赢发展突破了对立的、矛盾的发展。传统的发展是零和博弈似的、马太效应的:你有我就没有,你多我就少,富者越富穷者越穷。从某种程度上导致了人们互相争吵,世界不得安宁。现在,大数据时代的发展却是和谐的、合作共赢的。因为数据财富和资产可以复制、递增、共享。当然,关键还要看人的素质,因此要发展科教事业,提高人们素质。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01