
大数据的新目标:挖掘人的梦境 揭开潜意识的真面目
人类进入快速眼动睡眠(REM)的熟睡状态时,会将清醒时的现实情形与想象结合,营造出比真实世界更奇幻的梦境。梦可能无拘无束,可能治愈创伤,也可能是可怕怪异的噩梦。
众所周知,梦能孵化伟大的思想,曾孕育出爱因斯坦的相对论,也激发了滚石乐队创作伟大歌曲的灵感。不过,做梦的人几乎不可能将梦的内容传达给他人,所以大多数的梦境都只能自己独享,难逃被遗忘的结局。
20世纪初,弗洛伊德首次提出“梦”的说法,现代人则不妨将它当成一种“数据”来理解。大多数时候,人每晚会做很多梦,然而这海量信息大多数都会被遗忘。第二天醒来以后,我们常常只记得那么多梦里的一两个。即便是那些残存的零星梦境,也可能在我们抓起笔记下之前就从脑海里溜之大吉了。
因此,梦是很难研究的对象。和其他科研领域不同的事,没有多少关于“梦”的数据能够真正拿来研究,更别说推动理论进步,因此这个领域长期处于混沌未开的状态。
然而今时不同往日,如果能用时下流行的大数据来捕捉人的梦境,用一种量化的方式带领我们通往弗洛伊德所说的“通往潜意识的最佳途径”,那会不会有所突破?如果我们能够收集分析出梦的模式和相似之处,比如找出最常出现的是什么颜色,然后进行数据挖掘,这能否真正揭开人类潜意识的真相、找到做梦的缘由?
这些正是西班牙神经科学家翁贝托·莱昂·多明戈斯等学者提出的大胆假设。
多明戈斯在马德里自治大学医学院精神病学系工作,是睡眠与昼夜节律实验室的研究员。他认为:“既然社交网站的鼻祖Facebook和打车软件Uber能够管理人们有意识的信息,我们也该更进一步,管理自己的潜意识。”
除了在实验室做研究,多明戈斯还是一款叫Shadow的手机应用的研发顾问,该应用目前还处于开发阶段。那是一款众包的闹钟应用和梦境日志,希望利用特定的算法,在全球的“做梦者”中找出梦境的模式。在人类漫长的梦境收集史上,Shadow算是最新的尝试。
美国心理学家玛丽·惠顿·卡尔金斯(Mary Whiton Calkins)是收集并系统组织大量梦境数据的其中一位先驱。她还是首位当选美国心理学会主席的女性,堪称真正的“梦境会计师”。1893年,她收集了几百个梦境,对这些信息进行统计分析。她发现,“梦中的生活和现实世界有着密切的联系。”这一结论让过去认为梦境毫无意义的人仿佛受了当头一棒。
上世纪50年代,又出现了一个颠覆传统观念的科学创举——第一个真正的梦境数据库建起来了。当时,以哈佛大学心理学家伯特·卡普兰(Bert Kaplan)为首的一批社会学家尝试建立一个“有史以来规模最大的社会学信息数据库”。
哈佛大学的科学史教授瑞贝卡·勒莫夫(Rebecca Lemov)在她即将出版的著作中提到了这个项目:“到20世纪中叶,这项新的运动捕捉并定格了人类生活最难以捉摸之处。紧张之处就在于这里——从梦境这样转瞬即逝的信息中创建数据。”而且,这些考古学家和心理学家不只旨在创建数据,他们还想将它存储起来,供后世科学家研究。
这些研究者的确收集了很多梦境(其中大多数来自美洲土著部落人),但是,他们把这些信息存在一个现在早已过时的存储系统Microcard里,导致美好的愿景从未实现。加州伯克利神学联盟研究生院的访问学者凯利·巴尔克利(Kelly Bulkeley)也是一位梦境研究者。他评价,上世纪中叶那批科学家收集梦境的想法是对的,可惜他们的技术落后于时代,最终让研究活动走上歧途。
现在,巴尔克利成了新一代梦境数据收集与分析领域的领军人物,他的在线档案已经记录了上千个梦境,都可以进行搜索查询。他和认知心理学家威廉·多姆霍夫(William Domhoff)合作,给上世纪50年代的科研理念注入了信息时代的生机。
多姆霍夫也是用大数据手段研究梦境的先行者,他成立了一个梦境收集网站Dreambank.net。据美国商业杂志《快公司》报道,巴尔克利与多姆霍夫的关键字算法可以推导出做梦者“清醒状态下的准确信息,包括其生活习惯(职业、体育活动、爱好)、人际关系和性关系状态(在约会还是已婚,性生活是否活跃)、情绪状态(积极投入、焦虑不安、无聊乏味还是抑郁低落)。”
登陆巴尔克利的网站,通过上面的众多关键字来筛选,并观察数据样本,你会发现有上百个梦境和《哈利·波特》里的人物、吸血鬼和僵尸有关。该网站还提供诸如“进步人士的梦”和“极保守人士的梦”,甚至可以分国别查看乌克兰、巴西、阿根廷等国家国民的梦。数据表明,梦的体验可能源于做梦者内心根深蒂固的意识形态、道德或者宗教信仰。
巴尔克利也是Shadow的顾问,但他担心,仅仅推出一款应用还不足以鼓动用户分享并即时更新自己的梦。他说:“人们对某些梦的模式非常好奇,但要是没有一些实质性的奖励来支持,我觉得这还不足以吸引人去尝试。”
不过,就在今年早些时候,Shadow发布了内部测试版,目前已有几千人使用Shadow上传了自己的梦境。现在Shadow正在修复漏洞,并采取措施保障数据安全,计划在今年年底以前公开发布测试版。
Shadow也并非目前唯一收集到海量梦境数据的智能手机应用。一款名为DreamSphere的iPhone应用已经收集了将近200万个梦,范围遍及印度、墨西哥等多个国家,用户能够看到世界各地的人都梦到些什么。
即使梦境收集无法达到Facebook的水平,对研究人员来说,这些激增的信息也已成为巨大的考验。巴尔克利预计:“未来几年里,我们会看到一波新的(梦境)研究高潮,这将挑战大家对梦的传统观念。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29