
大数据的新目标:挖掘人的梦境 揭开潜意识的真面目
人类进入快速眼动睡眠(REM)的熟睡状态时,会将清醒时的现实情形与想象结合,营造出比真实世界更奇幻的梦境。梦可能无拘无束,可能治愈创伤,也可能是可怕怪异的噩梦。
众所周知,梦能孵化伟大的思想,曾孕育出爱因斯坦的相对论,也激发了滚石乐队创作伟大歌曲的灵感。不过,做梦的人几乎不可能将梦的内容传达给他人,所以大多数的梦境都只能自己独享,难逃被遗忘的结局。
20世纪初,弗洛伊德首次提出“梦”的说法,现代人则不妨将它当成一种“数据”来理解。大多数时候,人每晚会做很多梦,然而这海量信息大多数都会被遗忘。第二天醒来以后,我们常常只记得那么多梦里的一两个。即便是那些残存的零星梦境,也可能在我们抓起笔记下之前就从脑海里溜之大吉了。
因此,梦是很难研究的对象。和其他科研领域不同的事,没有多少关于“梦”的数据能够真正拿来研究,更别说推动理论进步,因此这个领域长期处于混沌未开的状态。
然而今时不同往日,如果能用时下流行的大数据来捕捉人的梦境,用一种量化的方式带领我们通往弗洛伊德所说的“通往潜意识的最佳途径”,那会不会有所突破?如果我们能够收集分析出梦的模式和相似之处,比如找出最常出现的是什么颜色,然后进行数据挖掘,这能否真正揭开人类潜意识的真相、找到做梦的缘由?
这些正是西班牙神经科学家翁贝托·莱昂·多明戈斯等学者提出的大胆假设。
多明戈斯在马德里自治大学医学院精神病学系工作,是睡眠与昼夜节律实验室的研究员。他认为:“既然社交网站的鼻祖Facebook和打车软件Uber能够管理人们有意识的信息,我们也该更进一步,管理自己的潜意识。”
除了在实验室做研究,多明戈斯还是一款叫Shadow的手机应用的研发顾问,该应用目前还处于开发阶段。那是一款众包的闹钟应用和梦境日志,希望利用特定的算法,在全球的“做梦者”中找出梦境的模式。在人类漫长的梦境收集史上,Shadow算是最新的尝试。
美国心理学家玛丽·惠顿·卡尔金斯(Mary Whiton Calkins)是收集并系统组织大量梦境数据的其中一位先驱。她还是首位当选美国心理学会主席的女性,堪称真正的“梦境会计师”。1893年,她收集了几百个梦境,对这些信息进行统计分析。她发现,“梦中的生活和现实世界有着密切的联系。”这一结论让过去认为梦境毫无意义的人仿佛受了当头一棒。
上世纪50年代,又出现了一个颠覆传统观念的科学创举——第一个真正的梦境数据库建起来了。当时,以哈佛大学心理学家伯特·卡普兰(Bert Kaplan)为首的一批社会学家尝试建立一个“有史以来规模最大的社会学信息数据库”。
哈佛大学的科学史教授瑞贝卡·勒莫夫(Rebecca Lemov)在她即将出版的著作中提到了这个项目:“到20世纪中叶,这项新的运动捕捉并定格了人类生活最难以捉摸之处。紧张之处就在于这里——从梦境这样转瞬即逝的信息中创建数据。”而且,这些考古学家和心理学家不只旨在创建数据,他们还想将它存储起来,供后世科学家研究。
这些研究者的确收集了很多梦境(其中大多数来自美洲土著部落人),但是,他们把这些信息存在一个现在早已过时的存储系统Microcard里,导致美好的愿景从未实现。加州伯克利神学联盟研究生院的访问学者凯利·巴尔克利(Kelly Bulkeley)也是一位梦境研究者。他评价,上世纪中叶那批科学家收集梦境的想法是对的,可惜他们的技术落后于时代,最终让研究活动走上歧途。
现在,巴尔克利成了新一代梦境数据收集与分析领域的领军人物,他的在线档案已经记录了上千个梦境,都可以进行搜索查询。他和认知心理学家威廉·多姆霍夫(William Domhoff)合作,给上世纪50年代的科研理念注入了信息时代的生机。
多姆霍夫也是用大数据手段研究梦境的先行者,他成立了一个梦境收集网站Dreambank.net。据美国商业杂志《快公司》报道,巴尔克利与多姆霍夫的关键字算法可以推导出做梦者“清醒状态下的准确信息,包括其生活习惯(职业、体育活动、爱好)、人际关系和性关系状态(在约会还是已婚,性生活是否活跃)、情绪状态(积极投入、焦虑不安、无聊乏味还是抑郁低落)。”
登陆巴尔克利的网站,通过上面的众多关键字来筛选,并观察数据样本,你会发现有上百个梦境和《哈利·波特》里的人物、吸血鬼和僵尸有关。该网站还提供诸如“进步人士的梦”和“极保守人士的梦”,甚至可以分国别查看乌克兰、巴西、阿根廷等国家国民的梦。数据表明,梦的体验可能源于做梦者内心根深蒂固的意识形态、道德或者宗教信仰。
巴尔克利也是Shadow的顾问,但他担心,仅仅推出一款应用还不足以鼓动用户分享并即时更新自己的梦。他说:“人们对某些梦的模式非常好奇,但要是没有一些实质性的奖励来支持,我觉得这还不足以吸引人去尝试。”
不过,就在今年早些时候,Shadow发布了内部测试版,目前已有几千人使用Shadow上传了自己的梦境。现在Shadow正在修复漏洞,并采取措施保障数据安全,计划在今年年底以前公开发布测试版。
Shadow也并非目前唯一收集到海量梦境数据的智能手机应用。一款名为DreamSphere的iPhone应用已经收集了将近200万个梦,范围遍及印度、墨西哥等多个国家,用户能够看到世界各地的人都梦到些什么。
即使梦境收集无法达到Facebook的水平,对研究人员来说,这些激增的信息也已成为巨大的考验。巴尔克利预计:“未来几年里,我们会看到一波新的(梦境)研究高潮,这将挑战大家对梦的传统观念。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22