京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据分析找出数据间隐藏的关联性
智能穿戴设备监测健康、城市交通和天气的观测、抓捕罪犯、金融监管……伴随着大数据呈现出无孔不入的趋势,大数据分析开始成为人类进行科学决策的重要工具。从IT时代向DT时代的转变,大数据分析技术用迅速、精准的方式构建更加低成本、高效率的商业社会,并作为时下最为流行的技术之一,已经渗透到行业的方方面面,帮助企业用数据驱动业务的发展。
“DT时代的到来,对客户全方位的了解可谓是全所未有的。有了数据分析技术,企业可以将服务做的更细致全面,将被动转变为主动。”北京明略软件系统有限公司副总裁兼金融事业部总经理周卫天认为,大数据与行业的融合,让数据本身的价值得到了加倍的提升。
深度挖掘不同数据源间的隐藏关系
成立于2014年的北京明略软件系统有限公司是一家明略数据专注于关系挖掘的大数据行业应用解决方案提供商。作为一家成立仅两年的初创企业,目前明略数据已经完成了A轮融资,B轮融资将会在明年(2016年)第二季度完成。当前明略数据主要服务包括金融业、制造业、政府等行业部门在内的大型国企。“针对金融行业和公安部门这类客户,大数据分析技术首先体现的是精准,通过关系分析管理,从而直达目标群体。”周卫天说道。
金融业是最先落地大数据的行业之一,现在国内不少银行已经开始尝试通过大数据来驱动业务的运营。明略数据推出的大数据分析整合平台,帮助银行实现了风险管控、精准营销、征信管理、舆情监控等一系列的优化和提升。
·风险管控、反欺诈应用:利用数据分析,进行贷款质量评估,规避坏账风险。对中小企业融资风险监控,实现尽早发现企业违约风险。
·精准营销:在客户画像的基础上开展一系列包括交叉营销、个性化推荐、实时营销、客户生命周期管理等精准营销管理。
·征信/催收放贷增收:基于IP、GPS物理位置定位客户行为轨迹,加强银行信用卡征信审核。根据关联客户关系网,进行债务催收。
·舆情监控:检测客服中心、网上留言、社交媒体等信息,制定有效的客户维系及挽留措施。
公安/刑侦是目前明略数据服务的另一大主要行业,通过隐藏的数据关系通过算法、分析进行挖掘,快速的帮助公安部门找到有效信息,从而顺藤摸瓜,抓到罪犯,提升紧急事件的应对能力。举个简单的例子,通过最开始的订票信息,IP地址,到后来的车次、酒店信息、运营商的数据,将数据间进行关联分析,就可以确定订票人之间的关系。
给用户“技术+服务”两大保障
以上介绍的金融业和公安部门是明略数据主要服务的两大行业、部门,对此也不难从侧面发现明略数据针对数 据安全性可以给出较高的保障。作为一个数据服务商,明略数据从网络安全、技术数据安全、使用安全等多方面入手,做到让客户安心。周卫天介绍,明略数据是国 内外第一家在SQL on Hadoop三大查询引擎(Hive, Impala和Spark SQL)上实现行,列级别细颗粒度的权限控制大数据平台供应商。
有了技术上的优势,也就有了竞争的底气。在被问到如何在国内的大数据市场中抢占份额的时候,周卫天的说 法很淡然,尽管国内的巨头已经进入进来,但市场很大,对像明略数据这样快速成长的企业还是存在很大的机会。另外,明略的优势是拥有专业的技术团队,可以把 海量的数据源进行关联分析、深度挖掘,找出其中所隐藏的关系线索。
谈到今后的发展策略,除了技术的专注,服务好现有客户将是明略数据近几年关注的焦点。据了解,2016年明略数据将扩大各省市分公司规模,采取就近布局,包括市场、内部管理运营制定一系列的分级响应措施, 增强客户的售后服务。此外在未来,明略数据也会邀请客户和技术人员进入到项目中来,以便更好地了解技术的使用,从而可以快速上手,以周卫天的话说,这也是客户增值服务的另一个角度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27