京公网安备 11010802034615号
经营许可证编号:京B2-20210330
零售行业常见数据分析简介
零售行业常见数据分析简介
1、财务分析
1)分析企业的财务状况,了解企业资产的流动性、现金流量、负债水平及企业偿还长短期债务的能力,从而评价企业的财务状况和风险。
2)分析企业的资产管理水平,了解企业对资产的管理状况,资金周转情况。
3)分析企业的获利能力。
4)分析企业的发展趋势,预测企业的经营前景。
同时,系统还应该按照部门、人员、商品、供应商、时间等各个维度综合分析各项财务指标,如:成本、毛利、利润、库存、结算、盈亏平衡点、销售数量、销售金额、市场占有率等等。
2、销售分析
主要分析各项销售指标,例如毛利、毛利率、坪效、交叉比、销进比、盈利能力、周转率、同比、环比等等;而分析维又可从管理架构、类别品牌、日期、时段等角度观察,这些分析维又采用多级钻取,从而获得相当透彻的分析思路;同时根据海量数据产生预测信息、报警信息等分析数据;还可根据各种销售指标产生新的透视表,例如最常见的ABC分类表、商品敏感分类表、商品盈利分类表等。
这些复杂的指标在原来的数据库中是难以实现的,老总们虽然知道他们非常有用,但由于无法得到,使得这些指标的地位也若有若无。直到BI技术出现之后,这些指标才重新得到了管理者和分析者们的宠幸。
3、商品分析
商品分析的主要数据来自销售数据和商品基础数据,从而产生以分析结构为主线的分析思路。主要分析数据有商品的类别结构、品牌结构、价格结构、毛利结构、结算方式结构、产地结构等,从而产生商品广度、商品深度、商品淘汰率、商品引进率、商品置换率、重点商品、畅销商品、滞销商品、季节商品等多种指标。通过对这些指标的分析来指导企业商品结构的调整,加强所营商品的竞争能力和合理配置。
4、顾客分析
顾客分析主要是指对顾客群体的购买行为的分析。例如,如果将顾客简单地分成富人和穷人,那么什么人是富人,什么人是穷人呢?实行会员卡制的企业可以通过会员登记的月收入来区分,没有推行会员卡的,可通过小票每单金额来假设。比如大于100元的我们认为是富人,小于100元的我们认为是穷人。好了,现在老总需要知道很多事情了,比如,富人和穷人各喜欢什么样的商品;富人和穷人的购物时间各是什么时候;自己的商圈里是富人多还是穷人多;富人给商场作出的贡献大还是穷人作出的贡献大;富人和穷人各喜欢用什么方式来支付等等。此外还有商圈的客单量、购物高峰时间和假日经济对企业影响等分析。
5、供应商分析
通过对供应商在特定时间段内的各项指标,包括订货量、订货额、进货量、进货额、到货时间、库存量、库存额、退换量、退换额、销售量、销售额、所供商品毛利率、周转率、交叉比率等进行分析,为供应商的引进、储备、淘汰(或淘汰其部分品种)及供应商库存商品的处理提供依据。主要分析的主题有供应商的组成结构、送货情况、结款情况,以及所供商品情况,如销售贡献、利润贡献等。通过分析,我们可能会发现有些供应商所提供的商品销售一直不错,它在某个时间段里的结款也非常稳定,而这个供应商的结算方式是代销。好了,分析显示出,这个供应商所供商品销售风险较小,如果资金不紧张,为什么不考虑将他们改为购销呢?这样可以降低成本呵。
6、人员分析
通过对公司的人员指标进行分析,特别是对销售人员指标(销售指标为主,毛利指标为辅)和采购员指标(销售额、毛利、供应商更换、购销商品数、代销商品数、资金占用、资金周转等)的分析,以达到考核员工业绩,提高员工积极性,为人力资源的合理利用提供科学依据的目的。主要分析主题有,员工的人员构成、销售人员的人均销售额、对于开单销售的个人销售业绩、各管理架构的人均销售额、毛利贡献、采购人员分管商品的进货多少、购销代销的比例、引进的商品销量如何等等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27