京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代我们的隐私真不重要吗?
想象一下有人在你背后谈论你。现在设想一下,这样的谈话就悄悄发生在你家客厅里,而你却无法听到。
这就是印度创业企业SilverPush的做法,该公司在电视广告里嵌入听不到的声音。广告播放时,会发出一种高频信号,安装有内置SilverPush软件的应用的手机或其他设备可接收到这种信号。这种“配对”——目前是针对印度消费者的——也会识别出用户附近的其他设备,让该公司得以监控他们在这些设备上做些什么。这一切都在消费者无知无觉的情况下发生。
这种“跨设备跟踪技术”——包括Adobe在内的其他公司也在探索此技术——标志着一个新时代的来临。这个新时代是所有人——政府、公司、慈善机构和消费者——将不得不应对的。
不久前,英国皇家统计学会(Royal Statistical Society)在温莎(Windsor)城堡召开了一次大会,思考大数据带来的挑战。大数据是一个被滥用、内涵解释欠清楚的术语,既指我们的设备产生的海量信息流,也指把这些信息整理为分门别类的一股股具有揭示性和预见性的信息流的潜力。
这次大会召开得正是时候:围绕日益增加的数据使用的伦理和治理可谓一团糟。目前迫切需要就这些海量数据应当如何收集、存储、相互参照和利用展开公众讨论。有人对大数据可能催生医疗革命感到兴奋:比如说,在疾病爆发时,可以为了更高的利益挖掘搜索数据。然而,如今,当出现糟糕情况时,公众讨论很大程度上变成公众的强烈声讨。
英国媒体监管机构英国通信办公室(Ofcom)的一份报告显示,英国成年人平均每周在线时间超过20小时。科技对我们生活的巨大影响,意味着我们的行为、习惯、欲望和抱负都可以通过触摸屏和键盘操作显露出来。
这使得对在线行为的分析成为一座新的金矿。个人数据就像金砂,每次我们随意对一家网站的条款与条件点击“确定”时,就把我们的个人数据交了出去。
这是我们面临的第一个问题:我们中大多数人都是不假思索地点击的(不过,条款与条件通常是难懂的法律措辞)。那么,我们对自己的个人数据随后被使用的各种情形是否行使了知情同意权,就成了疑问。为了证明这一点,一家安全公司在伦敦金融城(City of London)设立了一个公共WiFi热点,并嵌入一个“希律条款”(Herod Clause),要求用户承诺永远放弃他们的第一个孩子。在很短时间内,就有不少人为了免费上会儿网稀里糊涂地放弃了自己的孩子。
除了法律挑战,关于网络公司及其消费者之间公平与恰当的关系应该是怎样的,我们也很少进行过独立的审视。Facebook在这一点上便曾引起众怒,因为它为了做一个心理实验,对近70万用户的动态消息动了手脚。用户们声称,他们被那项研究给耍了,研究结果显示,那些接收到更少积极消息的人更可能写出消极的内容。Facebook反驳称,他们已获得了用户的同意。不久前,欧盟通过了数据保护规则,新规允许对侵犯隐私的行为处以高额罚款,这或许能阻止类似情况再次发生;用户不再像以往那样无论代价如何都只能被动同意了。
第二个挑战源自各种设备绕过人类、直接彼此对话的所谓物联网。所以,我的智能冰箱在储存消耗光了的时候可以自动给超市发电邮,要求补货。但这也可以意味着,我的那些“八卦”的设备构成了一张电子间谍网,它可以绘制出一幅有关我的饮食与其他癖性的极其详尽的图画,令人担心隐私暴露。实际上,在不久前的一个机器人学大会上,技术专家们把机器人收集数据(尤其是在私人住所里)的能力认定为大数据领域最大的单个伦理问题。
除了欧盟新的数据保护规则外,我们也需要更软性的方式:一个由专家和非专业人员构成的机构,为这一快速发展的领域带来知识、智慧和判断力。眼下,美国已有了一个由律师、哲学家和人类学家组成的大数据、伦理与社会委员会(Council for Big Data, Ethics and Society)。
欧洲应当仿效美国的做法,因为正如温莎大会上的一连串趣闻所显示的那样,公司和学术界人士在这个数据丰富的新世界航行时,似乎没有带上伦理指南针。2012年,一家俄罗斯公司推出了一款名为“Girls Around Me”的应用(App),可以汇集公开可见的信息,在不经使用者附近女性同意的情况下显示她们的实时位置和照片。这款跟踪骚扰者梦寐以求的应用被撤下了。“平方英里”(Square Mile,即伦敦金融城,因面积正好1平方英里得名——译者注)的高科技电子垃圾箱捕捉来自智能手机的信息,以跟踪不知情的机主的行踪,从而针对他们发布广告,这些垃圾桶因令人毛骨悚然而被取缔。
同时,一名科学家做了一款软件,能够通过彻底搜查推特(Twitter)人脉图,推断一名推特用户的种族、甚至宗教,这引发了使用公开发言推断私人信息是否合法的疑问。我们是否如一名律师所认为的那样,需要出台防止个人在线角色被滥用的法律?
我们有了可穿戴设备,这些设备像圣诞老人一样,在你睡着时注视着你,也知道你何时是醒着的。一家公司有可能找到推断你近来生活是否积极向上的办法——通过分析社交媒体发言表现出的情绪、访问慈善网站以及核查你的银行存款余额和健康追踪。
这证明:并非仅仅因为大数据使某事在技术上具备可行性,就意味着我们应该那么做。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26