京公网安备 11010802034615号
经营许可证编号:京B2-20210330
生态环境大数据建设需要系统设计
生态环境大数据建设是一项创新性工程,对推进环境治理体系和治理能力现代化将发挥积极的促进作用,需要系统设计,统筹规划,全面布局。
中国环境报:生态大数据建设的首要问题是什么?
程春明:树立全局性生态环保大数据发展观,实现数据“在一起”,这是大数据建设的前提与基础。因此,必须“更新观念,立足全局,打破割据,战略筹划”,用全局性的战略眼光谋划生态环境大数据建设。
中国环境报:生态环境大数据体系如何建立?
程春明:生态环境大数据的数据来源绝不仅仅局限于环保业务数据,而是更大范围、更多层次、更多结构的相关数据集合。通过部内、部际数据整合,社会、企业数据挖取,形成广样本、多结构、大规模、实时性的数据体系,使得数据的特征关联和创新应用成为可能,并不断丰富数据采集主体,创新数据采集手段。
在部内数据整合中,形成“一个司管理数据,其他司使用数据”的分工协作采集机制,对一个监管对象不重复采集数据,建立协调数据采集内容的工作机制。既提高环保工作效率,也提升公众满意度。
全流程的业务数据是生态环境大数据的重要数据来源和组成部分。改变目前环保内网的职责定位,由单纯的文件电子流转手段,转变为整个行政业务流程的监管手段,
同时,重视对社会公众相关数据的采集和整合,例如公众环境举报数据、社交媒体上的相关数据等。
中国环境报:在体制机制上如何适应?
程春明:生态环境大数据建设的顺利进行必须有环境管理体制机制上的支撑,形成与大数据相适应的良好管理生态,实现信息化系统的统一建设、应用系统和基础设施的统一运维、数据的集成管理。
按照今年环境保护部发布的《环境信息化建设项目管理办法》的要求,切实整合现有的环境信息系统,对新建的信息系统做好统筹立项,逐步改变环保信息系统职责交叉、标准不一、共享困难等现状,做好信息化和大数据相关规范和标准的建设。
通过制度规范,明确各业务部门在数据采集、使用、公开等方面的职能、关系和任务,明确数据方面的考核任务,形成促进数据共享、开放的体制机制。最终要形成支撑一线环保业务工作的环保云业务服务体系,成为“不下班”的数据保障系统,用数据打通排污许可、环境影响评价、污染物排放标准、总量控制、排污交易、排污收费等各管理环节,形成以大数据为核心的环境管理新业态。
中国环境报:如何推动大数据应用?
程春明:应用是大数据的灵魂。大数据为个性化地满足不同主体的差异化需求提供了可能。
一方面,大数据应用要抓住不同主体、不同业务、不同地域之间的需求差别,具体来说主要有以下3个层面:
一是按照不同的环境问题进行大数据创新应用,如黑臭水体治理问题、未批先建问题、雾霾预测预警等。
二是按照不同的环境业务进行大数据创新应用。按照陈吉宁部长要求,从监测、环评、政府网站3个环境业务领域入手开展大数据应用工作。
三是按照不同地域的环境工作特点开展大数据应用,突出地域特色,解决当地最突出的环境问题。
另一方面,大数据应用的创新主体要多元化。政府、企业、社会都是大数据应用的创新主体,应该通过多种方式积极引导社会力量参与大数据应用创新工作,在环境管理业务创新和社会应用创新两方面同时发力,形成“政府主导,多方参与,激发创新,共筑合力”的生态环境大数据创新应用格局。要激发生态环境大数据领域“大众创业、万众创新”的活力,积极培育环境大数据相关产业,推动形成环境大数据知识信息库。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04