
生态环境大数据建设需要系统设计
生态环境大数据建设是一项创新性工程,对推进环境治理体系和治理能力现代化将发挥积极的促进作用,需要系统设计,统筹规划,全面布局。
中国环境报:生态大数据建设的首要问题是什么?
程春明:树立全局性生态环保大数据发展观,实现数据“在一起”,这是大数据建设的前提与基础。因此,必须“更新观念,立足全局,打破割据,战略筹划”,用全局性的战略眼光谋划生态环境大数据建设。
中国环境报:生态环境大数据体系如何建立?
程春明:生态环境大数据的数据来源绝不仅仅局限于环保业务数据,而是更大范围、更多层次、更多结构的相关数据集合。通过部内、部际数据整合,社会、企业数据挖取,形成广样本、多结构、大规模、实时性的数据体系,使得数据的特征关联和创新应用成为可能,并不断丰富数据采集主体,创新数据采集手段。
在部内数据整合中,形成“一个司管理数据,其他司使用数据”的分工协作采集机制,对一个监管对象不重复采集数据,建立协调数据采集内容的工作机制。既提高环保工作效率,也提升公众满意度。
全流程的业务数据是生态环境大数据的重要数据来源和组成部分。改变目前环保内网的职责定位,由单纯的文件电子流转手段,转变为整个行政业务流程的监管手段,
同时,重视对社会公众相关数据的采集和整合,例如公众环境举报数据、社交媒体上的相关数据等。
中国环境报:在体制机制上如何适应?
程春明:生态环境大数据建设的顺利进行必须有环境管理体制机制上的支撑,形成与大数据相适应的良好管理生态,实现信息化系统的统一建设、应用系统和基础设施的统一运维、数据的集成管理。
按照今年环境保护部发布的《环境信息化建设项目管理办法》的要求,切实整合现有的环境信息系统,对新建的信息系统做好统筹立项,逐步改变环保信息系统职责交叉、标准不一、共享困难等现状,做好信息化和大数据相关规范和标准的建设。
通过制度规范,明确各业务部门在数据采集、使用、公开等方面的职能、关系和任务,明确数据方面的考核任务,形成促进数据共享、开放的体制机制。最终要形成支撑一线环保业务工作的环保云业务服务体系,成为“不下班”的数据保障系统,用数据打通排污许可、环境影响评价、污染物排放标准、总量控制、排污交易、排污收费等各管理环节,形成以大数据为核心的环境管理新业态。
中国环境报:如何推动大数据应用?
程春明:应用是大数据的灵魂。大数据为个性化地满足不同主体的差异化需求提供了可能。
一方面,大数据应用要抓住不同主体、不同业务、不同地域之间的需求差别,具体来说主要有以下3个层面:
一是按照不同的环境问题进行大数据创新应用,如黑臭水体治理问题、未批先建问题、雾霾预测预警等。
二是按照不同的环境业务进行大数据创新应用。按照陈吉宁部长要求,从监测、环评、政府网站3个环境业务领域入手开展大数据应用工作。
三是按照不同地域的环境工作特点开展大数据应用,突出地域特色,解决当地最突出的环境问题。
另一方面,大数据应用的创新主体要多元化。政府、企业、社会都是大数据应用的创新主体,应该通过多种方式积极引导社会力量参与大数据应用创新工作,在环境管理业务创新和社会应用创新两方面同时发力,形成“政府主导,多方参与,激发创新,共筑合力”的生态环境大数据创新应用格局。要激发生态环境大数据领域“大众创业、万众创新”的活力,积极培育环境大数据相关产业,推动形成环境大数据知识信息库。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04