
深度掘金“互联网+”潮流下的环保大数据时代
随着“互联网+”的不断渗透,大数据时代已然降临。作为走在产业前列的环保行业来说,已经逐渐完成与大数据的融合。在环保领域,政府、企业和民众也都成为大数据链条上不可或缺的环节。在即将到来的“十三五”,我国将妥善运用大数据的新技术谋划环保运行的新机制,助推产业转型升级,进入智能环保经济新时代。
作为创新2.0下的互联网发展新业态,“互联网+”这一新概念自2012年11月提出以后,以迅雷不及掩耳之势融入经济社会发展的各行各业每一个传统方式无法触及的角落。新的经济发展理念催生全新的数据化驱动模式,而这一模式在环境领域表现的最为显著,环保大数据应运而生。
“互联网+”大数据与环保的融合
在移动互联网与云计算等快速发展助推下,环保部门每时每刻都在产生着巨量的数据,而这些数据便被称之为“大数据”(BigData)。利用大数据的虚拟化特性,环保部门可以在大大降低环境管理风险的基础上,构建评估和预测预报模型,从而预测环境生态工作的未来发展态势。
大数据作用于环保最直接的体现案例在于“污染地图”的绘制。在污染源的生命周期过程中,每个节点所需要的每一类数据,都可以进行搜集分析,形成基于污染源管理的数据资源分布可视图。将原先只是虚拟存在的各种点,进行“点对点”的数据化、图像化展现,使得环保部门的管理者可以更直观地面对污染源企业。
随着互联网大数据技术的日新月异,大数据理念与环境数据管理已经完成精准彻底的融合,而随着工作需求从数据储存、数据处理过渡到数据应用与数据运维服务,传统环保行业对数据的处理模式已经远远不适应新一代数据中心的发展需求,逐渐退出历史舞台。
政府、企业与公众的环保大数据情结
“互联网+”大数据为解决环境问题创造诸多前提和有利条件。环境数据、信息等要素互通共享,从而推动环境问题得到整体有效解决。公众舆论借助互联网将对企业排污形成巨大压力,督促其有效治污,也将推动环境改善因素由单一政府向全社会延伸。
对政府而言。在大量数据累积的基础上,未来政府及环保相关部门需求方式将由传统的“数字环保”升级到“智慧环保”,更加强调数据获取后的分析预测和价值挖掘。在原有的“数字环保”基础上,借助物联网技术,把传感器和装备嵌入到各种环境监控对象中,通过云计算技术将环保领域的各物联网设备整合起来,实现人类社会与环境业务系统的整合,以更加精确和动态的方式实现环境管理和决策的“智慧”。
对企业而言。随着“互联网环保大数据”的蓬勃发展以及各界对于“互联网”对于“大数据”的关注与重视,以中国环保在线为代表,国内最早的一批将物联网、云计算、大数据等应用在环保设备领域的电商平台。而对于传统的排污企业,就意味着违法排污将有更多双眼睛盯着,更多紧箍咒压着,污染付出的代价将会越来越沉重。而对于环保企业而言,将助力企业加快产业转型升级,打开更大市场空间,迎来产业可持续发展黄金期。
对民众而言。通过大数据整理计算采集来的社交信息数据、公众互动数据等,可以帮助环保部门进行公众服务的水平化设计和碎片化扩散。可以借助社交媒体中公开的海量数据,通过大数据信息交叉验证技术、分析数据内容之间的关联度等,进而面向社会化用户开展精细化服务,为公众提供更多便利,产生更大价值。
环保大数据面临的难题及未来发展规划
长期以来,由于各种原因,的统计数据很难具有公信力。在环保数据方面,由于涉及到每个人的身体健康,关于PM2.5的数据及其分析更是广受诟病。宏观上说,当前我国在环境污染方面的管理制度还存在一些问题,采集数据存在多头并行的情况,导致数据不统一;另一方面,不同地域、不同行政系统,由于利益驱动、政绩考核,导致环保数据造假或多或少存在。
据环保部门一位不愿透露姓名的官员透露,环境保护部正在制订“环保+大数据”的相关方案,未来有望在环保领域运用大数据技术手段,提高治理能力。据透露,环保部未来将从五个方面推动大数据在环保领域的应用:
第一,夯实环保大数据的应用基础,确保数据的真实性,提高环境信息的公信力。第二,打造精准治污、科学治污、多方协作的环境污染治理新模式。第三,预测、预警。大数据的核心价值是预测,空气质量、环境污染都需要预警模型。第五,推动环保大数据的产业发展。
结语
正如维克托˙迈尔-舍恩伯格在《大数据时代:生活、工作与思维的大变革》书中写道:“大数据开启了一次重大的时代转型,大数据正在改变我们的生活以及理解世界的方式,成为新发明和新服务的源泉,而更多的改变正蓄势待发……”。
进入“十三五”之后,“互联网”引发环境大数据的变革在即,对于整个产业来说,既是机遇也是挑战。政府、企业和民众都必须要有敏感的前瞻意识抓住机遇,乘势而上,为环保事业贡献出自己的一份力量,用大数据的新技术谋划环保运行的新机制,助推产业转型升级,进入智能环保经济新时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29