京公网安备 11010802034615号
经营许可证编号:京B2-20210330
深度掘金“互联网+”潮流下的环保大数据时代
随着“互联网+”的不断渗透,大数据时代已然降临。作为走在产业前列的环保行业来说,已经逐渐完成与大数据的融合。在环保领域,政府、企业和民众也都成为大数据链条上不可或缺的环节。在即将到来的“十三五”,我国将妥善运用大数据的新技术谋划环保运行的新机制,助推产业转型升级,进入智能环保经济新时代。
作为创新2.0下的互联网发展新业态,“互联网+”这一新概念自2012年11月提出以后,以迅雷不及掩耳之势融入经济社会发展的各行各业每一个传统方式无法触及的角落。新的经济发展理念催生全新的数据化驱动模式,而这一模式在环境领域表现的最为显著,环保大数据应运而生。
“互联网+”大数据与环保的融合
在移动互联网与云计算等快速发展助推下,环保部门每时每刻都在产生着巨量的数据,而这些数据便被称之为“大数据”(BigData)。利用大数据的虚拟化特性,环保部门可以在大大降低环境管理风险的基础上,构建评估和预测预报模型,从而预测环境生态工作的未来发展态势。
大数据作用于环保最直接的体现案例在于“污染地图”的绘制。在污染源的生命周期过程中,每个节点所需要的每一类数据,都可以进行搜集分析,形成基于污染源管理的数据资源分布可视图。将原先只是虚拟存在的各种点,进行“点对点”的数据化、图像化展现,使得环保部门的管理者可以更直观地面对污染源企业。
随着互联网大数据技术的日新月异,大数据理念与环境数据管理已经完成精准彻底的融合,而随着工作需求从数据储存、数据处理过渡到数据应用与数据运维服务,传统环保行业对数据的处理模式已经远远不适应新一代数据中心的发展需求,逐渐退出历史舞台。
政府、企业与公众的环保大数据情结
“互联网+”大数据为解决环境问题创造诸多前提和有利条件。环境数据、信息等要素互通共享,从而推动环境问题得到整体有效解决。公众舆论借助互联网将对企业排污形成巨大压力,督促其有效治污,也将推动环境改善因素由单一政府向全社会延伸。
对政府而言。在大量数据累积的基础上,未来政府及环保相关部门需求方式将由传统的“数字环保”升级到“智慧环保”,更加强调数据获取后的分析预测和价值挖掘。在原有的“数字环保”基础上,借助物联网技术,把传感器和装备嵌入到各种环境监控对象中,通过云计算技术将环保领域的各物联网设备整合起来,实现人类社会与环境业务系统的整合,以更加精确和动态的方式实现环境管理和决策的“智慧”。
对企业而言。随着“互联网环保大数据”的蓬勃发展以及各界对于“互联网”对于“大数据”的关注与重视,以中国环保在线为代表,国内最早的一批将物联网、云计算、大数据等应用在环保设备领域的电商平台。而对于传统的排污企业,就意味着违法排污将有更多双眼睛盯着,更多紧箍咒压着,污染付出的代价将会越来越沉重。而对于环保企业而言,将助力企业加快产业转型升级,打开更大市场空间,迎来产业可持续发展黄金期。
对民众而言。通过大数据整理计算采集来的社交信息数据、公众互动数据等,可以帮助环保部门进行公众服务的水平化设计和碎片化扩散。可以借助社交媒体中公开的海量数据,通过大数据信息交叉验证技术、分析数据内容之间的关联度等,进而面向社会化用户开展精细化服务,为公众提供更多便利,产生更大价值。
环保大数据面临的难题及未来发展规划
长期以来,由于各种原因,的统计数据很难具有公信力。在环保数据方面,由于涉及到每个人的身体健康,关于PM2.5的数据及其分析更是广受诟病。宏观上说,当前我国在环境污染方面的管理制度还存在一些问题,采集数据存在多头并行的情况,导致数据不统一;另一方面,不同地域、不同行政系统,由于利益驱动、政绩考核,导致环保数据造假或多或少存在。
据环保部门一位不愿透露姓名的官员透露,环境保护部正在制订“环保+大数据”的相关方案,未来有望在环保领域运用大数据技术手段,提高治理能力。据透露,环保部未来将从五个方面推动大数据在环保领域的应用:
第一,夯实环保大数据的应用基础,确保数据的真实性,提高环境信息的公信力。第二,打造精准治污、科学治污、多方协作的环境污染治理新模式。第三,预测、预警。大数据的核心价值是预测,空气质量、环境污染都需要预警模型。第五,推动环保大数据的产业发展。
结语
正如维克托˙迈尔-舍恩伯格在《大数据时代:生活、工作与思维的大变革》书中写道:“大数据开启了一次重大的时代转型,大数据正在改变我们的生活以及理解世界的方式,成为新发明和新服务的源泉,而更多的改变正蓄势待发……”。
进入“十三五”之后,“互联网”引发环境大数据的变革在即,对于整个产业来说,既是机遇也是挑战。政府、企业和民众都必须要有敏感的前瞻意识抓住机遇,乘势而上,为环保事业贡献出自己的一份力量,用大数据的新技术谋划环保运行的新机制,助推产业转型升级,进入智能环保经济新时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26